

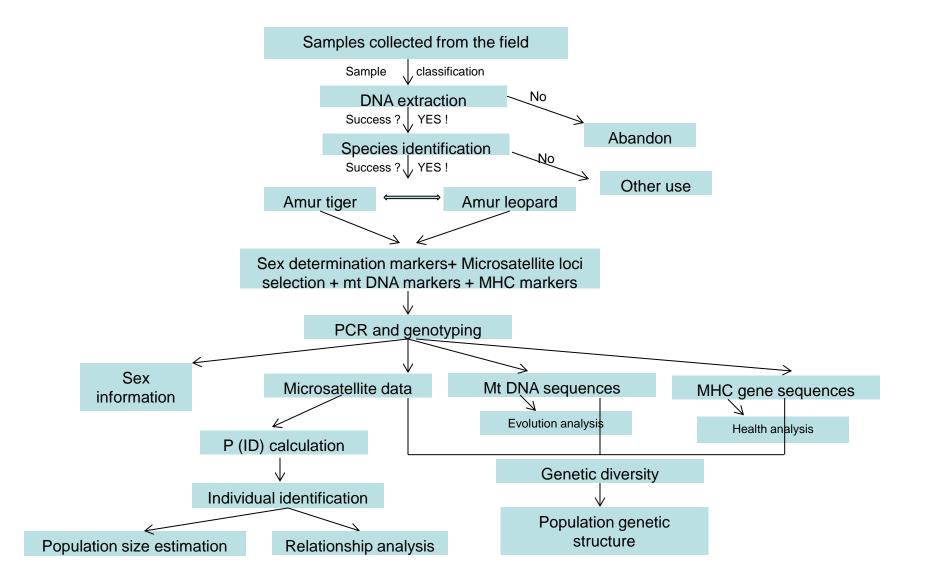
Review meeting on the NEASPEC Project "Study on Transborder Movement of Amur Tigers and Leopards using Camera Trapping and Molecular Genetic Analysis"

Molecular Genetic Analysis Method of Amur Tiger and Amur Leopard

Hui Liu

Feline Research Center of Chinese State Forestry Administration; College of Wildlife Resources, Northeast Forestry University

September 15, 2015 Harbin, China


Outline

- Part 1 Key questions
- Part 2 What have 'THEY' done ?
- Part 3 Will 'good' be 'perfect' ?
- Part 4 Recommendations
- Part 5 Our methods

Part 1 Key questions related with Amur tiger and Amur leopard conservation and management practice

- ✓ What is that ? (Species identification)
- ✓ How many are there ? (individual identification, population size)
- How are they ? (Sex ratio, Genetic diversity and structure, Health condition)
- ✓ What is good ? (methods commonly used)

Data analysis framework

Part 2 What have 'THEY' done to resolve these questions ?

2.1 What is that ?

2.2 How many are there ?

2.3 How are they ?

2.4 what is good ?

OR?

OR?

2.1 What is that ?

Table 1

Species identification

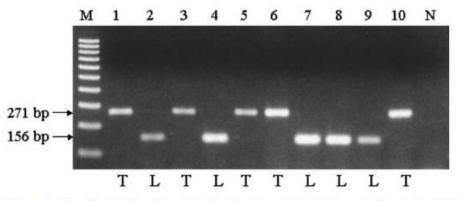
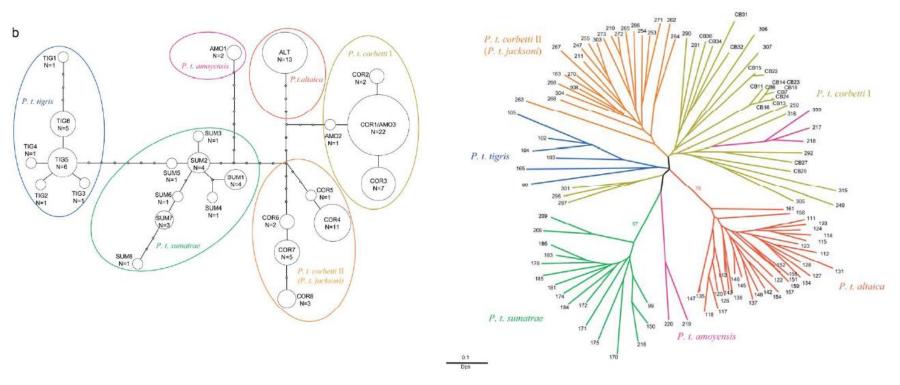


Figure 1. Examples for species identification from faecal samples. Panthera tigris altaica specific fragments (271 bp) are observed in lanes 1, 3, 5, 6 and 10. Panthera pardus orientalis specific fragments (156 bp) are observed in lanes 2, 4, 7, 8 and 9. Lane M: 100 bp ladder maker; Lane N: PCR negative control. T and L denote tiger and leopard, respectively.


Sugimoto, T. *et al.* (2006). Species and sex identification from faecal samples of sympatric carnivores, Amur leopard and Siberian tiger, in the Russian Far East. *Conservation Genetics*, 7(5), 799-802.

	Name	338	339	340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358
	P. t. altaica	G	Α	A	Α	Т	А	Т	С	G	G	G	Α	Т	Т	G	т	G	С	Т	Α	Т
Tiger	P. t. corbetti	G	A	A	A	Т	A	т	С	G	G	G	A	т	т	G	т	G	C	т	A	Т
	P. t. sumatrae	G	А	A	A	Т	А	т	С	G	G	G	А	т	т	G	т	G	C	т	Α	Т
	P. t. tigris	G	А	А	Α	С	А	т	С	G	G	G	А	т	т	G	т	G	С	т	Α	Т
	P. leo	G	А	А	Α	С	А	Т	Т	G	G	А	А	Т	Т	G	Т	G	Т	Т	G	Т
	P. b. chinensis	G	А	A	Α	C	А	Т	Т	G	G	А	Α	т	C	Α	т	Α	C	т	G	C
-	N. nebulosa	G	А	A	Α	С	А	Т	Т	G	G	А	A	Т	C	G	т	Α	Т	т	A	C
-tiger	F. catus	G	A	A	A	C	A	т	Т	G	G	А	A	т	C	A	т	Α	C	т	Α	т
Non-	C. e. hispanicus	G	Α	A	A	C	А	т	С	G	G	A	G	т	A	G	т	Т	C	т	Т	C
Z	A. a. pfitzmayeri	G	А	A	Α	С	А	т	С	G	G	A	G	т	G	A	т	C	С	т	Т	C
	O. aries	G	Α	A	Α	С	А	т	С	G	G	А	G	Т	A	A	Т	C	С	т	C	C
	C. hircus	G	А	A	A	C	A	Т	T	G	G	A	G	т	A	A	Т	d	C	т	C	C

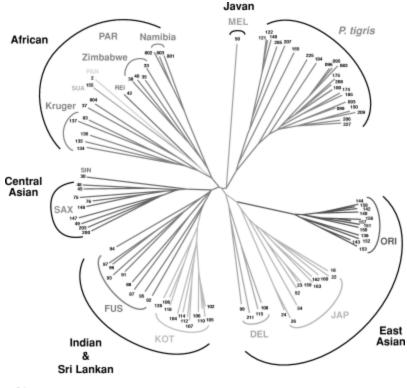
The variations in the DNA sequences for 10 bp either side of no. 348 base for some species/subspecies downloaded

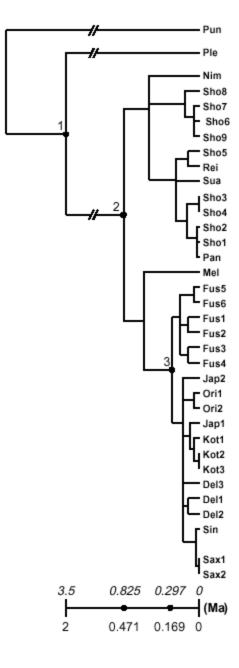
Wan, Q. H., & Fang, S. G. (2003). Application of species-specific polymerase chain reaction in the forensic identification of tiger species. *Forensic Science International*, 131(1), 75-78.

Sub-species identification-Amur tiger

To investigate the species' evolutionary history and to establish objective methods for subspecies recognition, voucher specimens of blood, skin, hair, and/or skin

biopsies from 134 tigers with verified geographic origins or heritage across the whole distribution range were examined for three molecular markers:


- (1) 4 kb of mtDNA sequence
- (2) MHC DRB gene;
- (3) 30 Microsatellite loci


Population genetic structure suggested the recognition of the sixth subspecies Malayan tiger P. t. jacksoni

Luo, S. J., Kim, J. H., Johnson, W. E., Walt, J. V. D., Martenson, J., & Karanth, U. K. (2004). Phylogeography and genetic ancestry of tigers (Panthera tigris). *PLoS biology*, *2*(12), 2275-2293.

Sub-species identification-Amur leopard

Phylogenetic analysis of mitochondrial DNA sequences (727 bp of *NADH5* and control region) and 25 polymorphic microsatellite loci conducted byOlga Uphyrkina *et al* confirmed the sub-species of Amur leopard and revealed its taxonomic status.

0.1

2.2 How many are there ?

Individual identification-Amur tiger

TARO SUGIMOTO et al. identify we identified 12 tigers (5 males and 7 females) using 10 microsatellite from more than 100 noninvasive genetic samples, such as feces, hairs, and saliva, collected from southwest Primorye Krai during 4 winters (2000–2001, 2001–2002, 2002–2003, and 2004–2005).

10 microsatellite loci (6HDZ089, FCA043, FCA077, FCA090, FCA094, FCA105, FCA123, FCA161, FCA224, and FCA441) were selected from 18 loci developed by Williamson et al.(2002) and 25 loci used by Uphyrkina et al. (2001)

	Total no.	Winters observed							
Individual	observations	2000–2001 $(n = 6)$	2001-2002 (n = 14)	2002-2003 (n = 42)	2004–2005 $(n = 17)$				
MT1	12	1	1	7	3				
MT2	2	1	0	1	0				
MT3	10	0	4	6	0				
MT4	1	0	0	1	0				
MT5	5	0	0	0	5				
FT1	1	1	0	0	0				
FT2	1	1	0	0	0				
FT3	6	0	1	3	2				
FT4	3	0	0	1	2				
FT5	1	0	0	1	0				
FT6	2	0	0	2	0				
FT7	2	0	0	2	0				
Total (n feces/n hairs)	46 (40/6)	4 (4/0)	6 (5/1)	24 (23/1)	12 (8/4)				

Sugimoto, T., Nagata, J., Aramilev, V. V., & McCullough, D. R. (2012). Population size estimation of Amur tigers in Russian Far East using noninvasive genetic samples. *Journal of mammalogy*, *93*(1), 93-101.

Individual identification-Amur tiger in China

Eleven scat samples were collected within and adjacent to the reserve during tiger monitoring surveys, of which, nine scat samples were identified as tiger using six mitochondrial DNA primer sets.

9 microsatellite loci were used to discern a total of five individuals (4 males and 1 female), each sample underwent at least four independent PCR reactions per locus

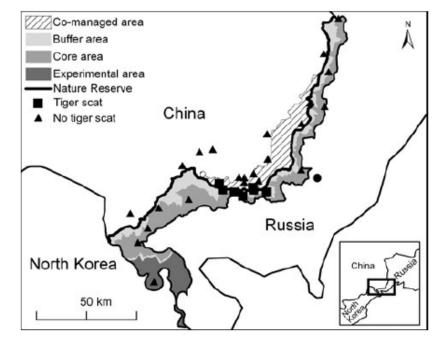
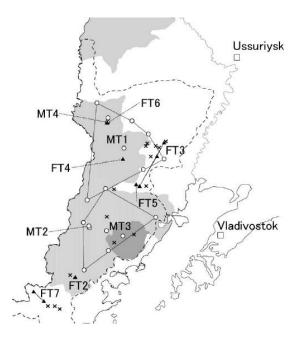


FIG. 1 Location of Hunchun Nature Reserve, showing sampling localities where tiger scats were and were not identified. Some sampling localities were outside the Reserve because there was anecdotal evidence of tigers in these areas. The black circle indicates the nearest tiger population in Russia (Russello et al., 2004) and the inset the location of the main map on the China-Russia border. The three shades of grey indicate different zones within the Reserve.

Caragiulo, A., Kang, Y., Rabinowitz, S., Dias-Freedman, I., Loss, S., Zhou, X. W., ... & Amato, G. (2015). Presence of the Endangered Amur tiger Panthera tigris altaica in Jilin Province, China, detected using non-invasive genetic techniques. *Oryx*, 1-4.


Population size -Amur tiger

TARO SUGIMOTO et al. identify we identified 12 tigers from more than 100 noninvasive genetic samples collected from southwest Primorye Krai during 4 winters, and population size estimated from the 2002–2003 samples was 12 (95% confidence interval 5 9–19)

In addition, Of the 3 types of noninvasive genetic samples we collected, feces were the most useful samples in tiger population size estimation.

Effective population size -Amur tiger

P. HENRY et al. sampled 95 individuals collected throughout their native range in Russia and estimates of effective population size (Ne = 27-35) and Ne/N ratio (0.07–0.054), which is quite low.

 MOLECULAR ECOLOGY

 Molecular Ecology (2009) 18, 3172-3184
 doi: 10.1111/j1346-244.X2009.04246.s

In situ population structure and *ex situ* representation of the endangered Amur tiger

P. HENRY,* D. MIQUELLE, † T. SUGIMOTO, ‡ D. R. McCULLOUGH, § A. CACCONE¶ and M. A. RUSSELLO*

¹Department of Biology and Center for Species at Rok and Habits Unders, Undersnip y Breith Colombia Columgan, 333 Uniterestry Mg, Kehman, BC, Canada VVI V7, P. Russin are Tast Program, Wildlife Conservation Society, 2200 Southern Boulemand, Neu York, NY 1040, USA, Qordante School of Environmental Earth Science, Fokkade University, NUNK Soupport, Hokadaki 6006003, Japas, SDpartment of Environmental Science, 7200, editors and other and the Science of Viethmate Zackogy, University of California, Brelefay, CA 91220, USA, QD-partment of Environmental Science, 2006, and Management and Mascum of Viethmate Zackogy, University of California, Brelefay, CA 91220, USA, QD-partment of Environmental Science, 2006, and Management and Mascum of Viethmate Zackogy, University of California, Brelefay, CA 91220, USA, QD-partment of Environmental Science, 2006, 2005, USA

Abstract

The Amur tiger (Panthera tigris altaica) is a critically endangered felid that suffered a severe demographic contraction in the 1940s. In this study, we sampled 95 individuals collected throughout their native range to investigate questions relative to population genetic structure and demographic history. Additionally, we sampled targeted individuals from the North American ex situ population to assess the genetic representation found in captivity. Population genetic and Bayesian structure analyses clearly identified two populations separated by a development corridor in Russia. Despite their welldocumented 20th century decline, we failed to find evidence of a recent population bottleneck, although genetic signatures of a historical contraction were detected. This disparity in signal may be due to several reasons, including historical paucity in population genetic variation associated with postglacial colonization and potential gene flow from a now extirpated Chinese population. Despite conflicting signatures of a bottleneck, our estimates of effective population size ($N_e = 27-35$) and N_e/N ratio (0.07-0.054) were substantially lower than the only other values reported for a wild tiger population. Lastly, the extent and distribution of genetic variation in captive and wild populations were similar, yet gene variants persisted ex situ that were lost in situ. Overall, our results indicate the need to secure ecological connectivity between the two Russian populations to minimize loss of genetic diversity and overall susceptibility to stochastic events, and support a previous study suggesting that the captive population may be a reservoir of gene variants lost in situ

Keywords: bottleneck, captive, conservation genetic, microsatellike, Panthem tigris altaias, population genetic structure

Received 17 November 2008; revision received 30 April 2009; accepted 5 May 2009

2.3 How are they ?

Sex ratio-Amur tiger and leopard

For sex identification, Sugimoto et al designed primers specific to both tiger and leopard ZFX-PF (5 ¢ TACCGAGCGATATAGCTCCAG-3 ¢) /ZFX-PR (5 ¢ -GTGTTCCTACGTTAAGCTATTG-3¢) for X chromosome and DBY7-PF (5 ¢ -CTCATGAAGCCCTATTTTTGGTTG-3¢) /DBY7-PR (5 ¢ -ACGGCGTCCGTATCTT CCA-3¢) for Y

their fragment sizes were 205 and 156 bp, respectively.

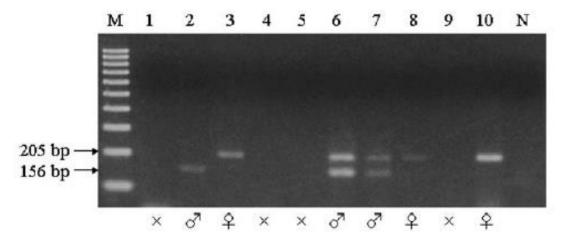


Figure 2. Examples for sex identification from faecal samples. DBY fragments are present in lanes 2, 6 and 7, and samples were from males. Zfx fragments are present but DBY fragments are absent in lanes 3, 8 and 10, and samples were from females. DNA amplification is unsuccessful in lanes 1, 4, 5 and 9.

Sugimoto, T., Nagata, J., Aramilev, V. V., Belozor, A., Higashi, S., & McCullough, D. R. (2006). Species and sex identification from faecal samples of sympatric carnivores, Amur leopard and Siberian tiger, in the Russian Far East. *Conservation Genetics*, *7*(5), 799-802.

Genetic diversity -Amur tiger and leopard

物种	研究区域	等位基因数	期望杂合度
Species	Study area	Na	He
	吉林珲春自然保护区 Hunchun Nature Reserve, Jilin Province	2.64	0. 371
东北虎 Panthera tigris altaica	俄罗斯远东滨海边境区域 Primorye Krai,Russian Far East	3.20	0. 580
	扬州市茱萸湾动物园 Zhuyuwan Zoo, Yangzhou	5. 53	0.750
	内蒙古赛罕乌拉自然保护区 Saihanwula Nature Reserve, Inner Mongolia	2. 88	0. 547
欧亚猞猁 Lynx lynx	波兰和白俄罗斯边界地区 Polish and Belarussian border	3.97	0. 500
	挪威和瑞典的 Scandinavia 半岛 Scandinavian Peninsula of Sweden and Norway	4.70	0. 510
孟加拉虎 Panthera tigris tigris	印度 Nehru 动物园 Nehru Zoological Park, India	6. 40	0. 740
雪豹 Panthera uncia	尼泊尔东部地区 East of Nepal	3.83	0. 579

Zhou et al. found that genetic diversity of Amur tiger is relatively lower than other felids. And the parameter of tigers in China is slightly lower than in adjacent Russia Fareast.

The application of extracting DNA from noninvasive samples in feline species, Zhou et al., 2015

Olga Uphyrkina et al. noted that Recent demographic reductions likely have led to genetic impoverishment in *P. p. orientalis*.

Uphyrkina, O., Johnson, W. E., Quigley, H., Miquelle, D., Marker, L., Bush, M., & O'Brien, S. J. (2001). Phylogenetics, genome diversity and origin of modern leopard, Panthera pardus. *Molecular ecology*, *10*(11), 2617-2633. Table 5. Genetic variation across mtDNA gene segments (NADH-5, 611 bp, and Control Region, 116 bp) and 25 microsatellite loci in seven revised leopard subspecies

	m		Microsatellites								
Subspecies	Number leopards mtDNA/ µsat	Number variable sites	Mean number pairwise differences (SE)	π × 10 ² (SE)	% Polymorphic loci	Average H _E (SE)	Average number alleles/locus	% Specific alleles	Average range repeat/locus	Microsatellite variance	Maximun range
Panthera pardus	69/75	50	8.67 (4.40)	1.21 (0.62)	100	0.793 (0.073)	11.08	-	12.64	7.11	17
P. p. pardus (I + II)	15/17	21	8.77 (4.29)	1.22 (0.67)	100	0.803 (0.076)	8.52	29.1	9.72	7.28	15
PARI	11/13	14	4.78 (2.53)	0.67 (0.40)	100	0.795 (0.099)	8.36	20.1	10.28	7.59	13
PAR II	4/4	3	3.75 (2.38)	0.52 (0.39)	100	0.675 (0.083)	4.08	3.92	6.00	5.24	9
P. p. saxicolor	8/10	2	0.50 (0.47)	0.07 (0.07)	100	0.616 (0.083)	4.24	2.83	5.12	4.28	7
P. p. fusca	9/9	8	2.61 (1.54)	0.36 (0.24)	100	0.696 (0.144)	5.52	5.80	6.2	5.38	9
P. p. kotiya	10/11	2	0.56 (0.50)	0.08 (0.08)	96	0.485 (0.202)	3.52	5.68	4.58	4.25	7
P. p. delacouri	3/4	5	3.41 (2.37)	0.48 (0.41)	100	0.674 (0.126)	4.20	5.71	5.56	5.70	6
P. p. japonensis	9/11	1	0.95 (0.71)	0.21 (0.15)	100	0.549 (0.171)	3.76	3.19	4.44	2.70	7
P. p. orientalis	12/12	1	0.17 (0.24)	0.02 (0.04)	92	0.356 (0.222)	2.60	3.07	2.84	1.71	4

Genetic structure -Amur tiger

P. HENRY et al. sampled 95 individuals collected throughout their native range in Russia and Bayesian structure analyses clearly identified two populations separated by a development corridor, and recommend to secure ecological connectivity between the two Russian populations to minimize loss of genetic diversity.

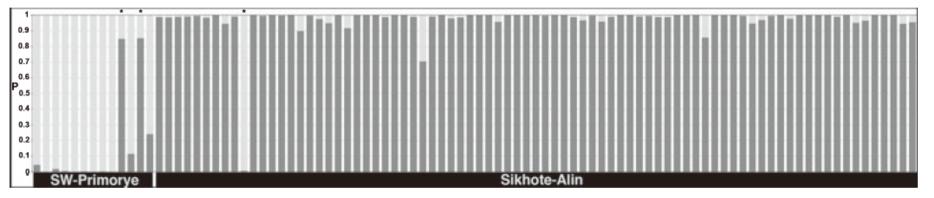


Fig. 2 Plot indicating the genetic composition of wild Amur tiger populations, expressed in terms of assignment probability (*P*) according to the Bayesian method of Francois *et al.* (2006). The relative contributions of each of the two genetic partitions recovered from the data are indicated by colour for each individual (column) in each sampled population. The Southwest Primorye cluster is represented in light grey while Sikhote-Alin is in dark grey. The three potential migrant individuals are identified with an asterisk above their corresponding columns.

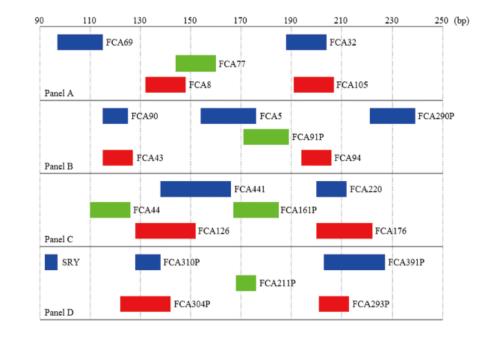
Henry, P., Miquelle, D., Sugimoto, T., McCullough, D. R., Caccone, A., & Russello, M. A. (2009). In situ population structure and ex situ representation of the endangered Amur tiger. *Molecular Ecology*, *18*(15), 3173-3184.

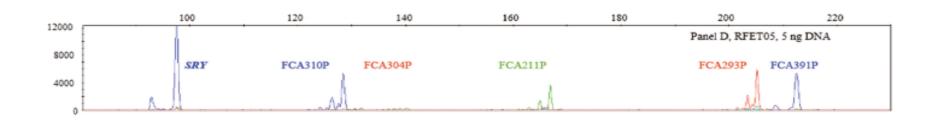
Health condition- MHC variability

- The major histocompatibility complex (MHC) controls a major part of the immune system in mammals and the variation of MHC genes can be a indicator of wildlife health condition.
- The study of SL Hendrickson et al. demonstrated that of the three tiger subspecies (Bengal, Panthera tigris tigris; Siberian, P. t. altaica; Sumatran, P. t. sumatrae), because of largest sample of both captive and wild tigers, Amur tigers provided the best estimates of variability and captive tigers were less so than the wild samples.
- We have to point out that it is still hard to do MHC variability analysis because of the complex of MHC structure.

Table 3. Mean average percentage difference among individuals (MAPD) and its standard error (SEM), both calculated from unweighted enzyme APD values, at the MHC class I complex for several mammalian species

Population	MAPD	SEM	Reference
Wild Siberian tiger	9.06	4.53	This study
Wild Sumatran tiger	4.79	2.41	This study
Wild Bengal tiger	1.28	1.28	This study
Captive Siberian tiger	5.26	1.90	This study
Captive Sumatran tiger	6.71	1.71	This study
Captive Bengal tiger	8.43	3.01	This study
Serengeti lion	8.8	1.3	Yuhki & O'Brien (1989)
Ngorongoro lion	5.8	1.3	Yuhki & O'Brien (1989)
Gir Forest lion	0	0	Yuhki & O'Brien (1989)
East African cheetah	2.2	0.8	Yuhki & O'Brien (1989)
South African cheetah	2.1	0.8	Yuhki & O'Brien (1989)
House cats	10.2	1.1	Yuhki & O'Brien (1989)
Humans	9.8	1.7	Yuhki & O'Brien (1989)


Hendrickson, S. L., Mayer, G. C., Wallen, E. P., & Quigley, K. (2000). Genetic variability and geographic structure of three subspecies of tigers (Panthera tigris) based on MHC class I variation. *Animal Conservation*, *3*(2), 135-143.

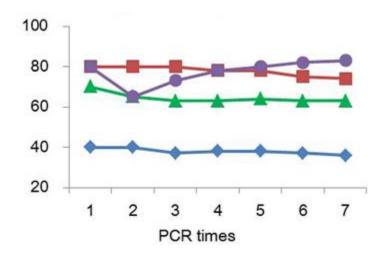

2.4 What is good --microsatellite markers for multiplex PCR

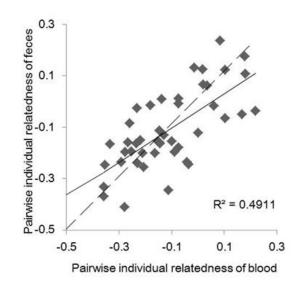
Zou *et al.* developed a multiplex genotyping system "tigrisPlex" composed of STR loci and a genderidentifying *SRY* gene, amplified in 4 reactions using as little as 1 ng of template DNA.

They applied "tigrisPlex" to 12 confiscated specimens from Russia and identified 6 individuals (3 females and 3 males) and further they applied a complete Bayesian clustering method implemented in STRUCTURE to calculate the probability (q) of a tiger with unknown identity belonging to each of the 5 putative subspecies using the voucher tiger subspecies samples (n = 113 [Luo et al. 2004]) as a reference and all designated as Amur tigers (*Panthera tigris*)

altaica) with high confidence.

ZOU, Z. T., UPHYRKINA, O., FOMENKO, P., & LUO, S. J. (2015). The Development and Application of a Multiplex STR System for Identifying Subspecies, Individuals and Sex in Tigers. *Integrative zoology*.

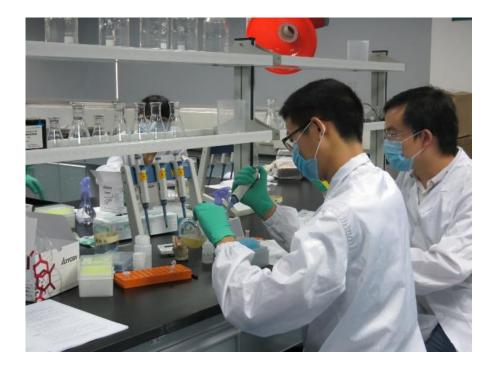

Part 3 Will 'good' be 'perfect' ?


In our recent piot study, we assessed genotyping risks across 12 microsatellite loci that were commonly used in tiger studies (**good loci**) using blood and fecal DNA from captive Amur tigers *Panthera tigris altaica*.

We repeated as many as 7~10 PCR times for some loci, but the genotyping results of some fecal DNA amplifications were still different from those of blood of the same individual.

YES ! Genotyping errors always existed .

So, we strongly recommend that when using scats as DNA resources, pilot study of genotyping error rate must be conducted to correct the final result.



Part 4 Recommendations

- 1. As discussed in Part 3, even 'good' loci may face great genotyping risks, we advocate to build a standardized genetic marker system that is suitable for non-invasive samples, such as scats and hair.
- 2. Multiplex PCR should be promoted to simplify our experimental procedure and improve the reliability of our genetic analysis results.
- 3. Establish a genotyping database with the standardized system which contains genetic data of Amur tiger and leopard in the whole Northeast China and Russia Fareast areas by all the researchers. So that we can share and exchange our information and promote to develop make more comprehensive conservation and management implications.

Part 5 Our methods

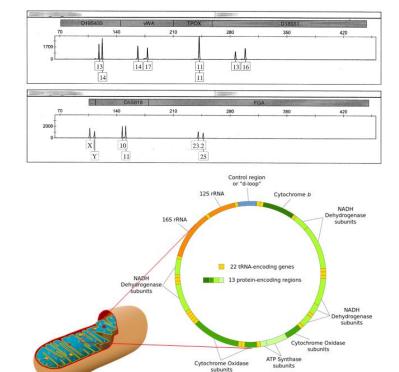
- ✓ Genetic samples preservation
- ✓ DNA extraction
- ✓ Genetic markers selection
- ✓ PCR and genotyping

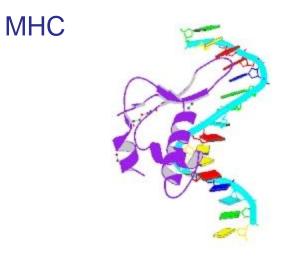
5.1 Genetic samples preservation

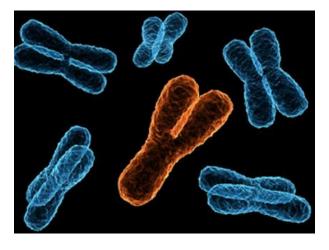
- We collected blood, urine and scats samples with ziplock bags and sterile gloves, and reserved the samples outdoors in the winter and portable ice boxes in other seasons.
- Preserve in Ultra-low Temperature Freezer (- 80 °C) until DNA extraction.

5.2 DNA extraction

Sample type	Extraction method	Remarks
Blood	QIAGEN blood & tissue kit (QIAGEN, Inc.)	
Tissue	Phenol/chloroform method & DNeasy Tissue Kit (Qiagen, Valencia, CA)	
Scat	QIAamp DNA Stool Mini Kit (50) (Qiagen)	With slight modifications, peer off about 5 g of feces and preserved in absolute ethanol for 24 h before extraction according to operation manual.
Urine	Phenol/chloroform method	
Hair	QIAamp DNA Stool Mini Kit (50) (Qiagen)	At least 3 hair with follicle are needed
Saliva	QIAamp DNA mini kit (Qiagen, Inc.)	


5.3 Genetic markers selection


• Microsatellite loci


• mtDNA fragment

• SRY gene

•

Microsatellite loci

We selected 12 microsatellite loci for Amur tiger and leopard from 35 loci presented in previous studies.

	Primers (5'-3')	Repeat motif	Annealing temperature (°C)	PCR product size range (bp)
E6	CCTGGGGATAATAAAACTAGTA	(TAA) ₁₁	58	147-162
	CATGAATGAATCTTTACACTGA			
E21B	GCGATAAAGGCTGGCAGAGG	(CA) ₂₁	62	154-168
	CTTTGAGGGTCTGTTCTACTGTGA			
D10	CCCTCTCTGTCCCTCCCTTG	(GT) ₁₄	62	134-150
	GCCGTTTCCCTCATGCTACA			
E7	GCCCCAAAGCCCTAAAATAA	$(CA)_{11}CG(CA)_4$	58	136-156
	GCATGTCGGACAGTAAAGCA			
Fca304	TCATTGGCTACCACAAAGTAGG	$(GT)_{17}(GG)_1(GT)_6$	58	120-134
	CTGCATGCCATTGGGTAAC			
Fca043	GAGCCACCCTAGCACATATACC		58	116-130
	AGACGGGATTGCATGAAAAG			
FCA391	GCCTTCTAACTTCCTTGCAGA	(ATGG) ₁₀ (GATA) ₁₁ (TAGA)	55	190-230
	TTTAGGTAGCCCATTTTCATCA	$_{2}$ TGA(TAGA) ₁		
Fca152	TTTAGTCAGCTTAGGCTTCCA	(AC) ₂₁	58	129-147
	CTTCCCAGCTTCCAGAATTG			
Pt i007	ATCAGGAGTTCTATCACC	(AC) ₁₆	52	139-193
	CATGATTAGGGAGTTGAG			
FCA441	ATCGGTAGGTAGGTAGATATAG	$(ATAG)_9(GTAG)_1(ATAG)_2$	58	130-168
	GCTTGCTTCAAAATTTTCAC	$AG(ATAG)_1$		
Fca094	TCAAGCCCCATTTTACCTTC	$(GT)_{19}(AG)_{22}$	58	193-215
	CACCTGAGCCAAAGGCTATC			
Pt i010	GGGACAACTGAGAGAAGA	$(AC)_8$	58	118-134
	CAAGATATGTTCTCAGACTG			

Samrat Mondol et al., 2009; Jyotsna Bhagavatula and Lalji Singh, 2006; T. Sugimoto et al., 2014

mtDNA fragment

- Leopard soecies-specific primer: Ppo-CbF (5¢-GTAAATTATGGCTGAATTATCCGG- 3¢) /Ppo-CbR (5¢- CATAACCGTGAACAATAATACGAC-3¢); (156bp)
- 2. Tiger species-specific primer, Pta-CbF (5¢-TTTGGCT CCTTACTAGGGGTG-3¢) /Pta-CbR (5¢-CCGT AAACAATAGCACAATCCCGATA-3¢) (217bp)

Primer ID	Mitochondrial Segments	Forward ^a	Reverse ^a	Size(bp)
	NDE			546
C53F1/T598R	ND5	CCCAGATCCCTATATTAACCAGT	TATATCATTTTGTGTGAGGGCAC	546
C708F/T1300R	ND5	CCTTGTCTTCCTGCATATCTG	CCATTGGAAAGTACCCGAGGAGGT	593
C1494F/T1936R	ND6	TCTCCTTCATAATCACCCTGA	TGGCTGGTGGTGTTGGTTGCGG	443
C2339F/T2893R	CytB	TTGCCGCGACGTAAACCACG	GTTGGCGGGGATGTAGTTATC	555
CR-UPF/CR-R2B	CR	TCAAAGCTTACACCAGTCTTGTAAACC	CGTGTTGTGTGTTCTGTAT	250
C4979F/T5424R ^b	125	GCACTGAAAATGCCTAGATGAGT	CCAGTTTGGGTCTTAGCTATCG	446
C-12S-F/N/C-12S-R	125	AAAGCCACAGTTAACGTAA	TACGACTTGTCTCCTCTTGTGG	577
T7812F/C8294R ^b	ND1	CGTCGTAGGACCATACGGCC	CTCAGTCTCCTTCTGTTAAAT	483
C8276F/T8620R	ND1	CGAAGCGAGCTCCATTTGATTTA	GTGGAATGCTTGCTGTAATGATGGG	345
T8942F/C9384R	ND2	CTTATAGTCTGAATCGGCTTCG	AGCTATGATTTTTCGTACCT	443
C9366F/T9882R	ND2	GGGGAGTTAACCAAACCGAG	CAAGGACGGATAGTATTGGTG	517
C10525F/T11013R ^b	COI	GGAGGATTCGGAAACTGGCGA	CCAGAAGTCTATATCTTAATCCCG	489
C11020F/T11428R	COI	CCAGAAGTCTATATCTTAATCCCG	GCTCCTATTGACAAGACGTAGTGGA	409
T11988F/C12414 ^b	COII	GGCATACCCCTTCCAACTAGGT	TGCACACTTCTATTGCTAGT	427
C12618F/T12920R ^b	ATP8	TTGTCCATGAACTAGTCCCATCAT	GGAAACAGCTATGACCGGCG	303

Table 1. PCR Primers Specific for Cytoplasmic Mitochondrial DNA Sequences

Luo, S. J., Kim, J. H., Johnson, W. E., Walt, J. V. D., Martenson, J., & Karanth, U. K. (2004). Phylogeography and genetic ancestry of tigers (Panthera tigris). *PLoS biology*, *2*(12), 2275-2293.

Sex determination gene

For sex identification, we used primers specific to both tiger and leopard ZFX-PF (5 $&\subset$ TACCGAGCGATATAGCTCCAG-3 $&\subset$) /ZFX-PR (5 $&\subset$ -GTGTTCCTACGTTAAGCTATTG-3 $&\subset$) for X chromosome and DBY7-PF (5 $&\subset$ -CTCATGAAGCCCTATTTTTGGTTG-3 $&\subset$) /DBY7-PR (5 $&\subset$ -ACGGCGTCCGTATCTT CCA-3 $&\subset$) for Y their fragment sizes were 205 and 156 bp, respectively.

MHC gene

MHC class I : Catalpha1F : 5'-CCACTCCCTGAGGTATTTCTACACC-3'; Catalpha2R: 5'-TGTCCAGGTATTTGGCGAGC-3'

MHC II DRB: DRB219: 5'-CCACACAGCGTTTCYTG-3'; DRB61A:5'-CCGCTGCACTGTGAAGCT-3'

Clone Number	Sequences	Clone Number	Sequences	
		1-		0
cat M910 M911 M912 M913 M915 M917 M919 M922 M923 M96 M97	1- 60 CCACTCCCTG AGGTATTTCT ACACCGCGAT TTCCCGGCCC GCCTCGGGG AGCCCCGCTG	cat CGCACAI A2-2FF A2-7ff A2-12ff A2-12ff A2-12ff A2-22ff A2-22ff A2-23ff A2-33ff A2-29ff A2-29ff	AACAT CCAGAGAATG TACGGCTGTG ACGTGGAAACC CGACGGOOGC CTCCTCCCGCG	-
M98 Cat M910 M912 M913 M915 M917 M919 M922 M923	-120 -120 CATCTCCGTG GGCTACGTGG ACGACACGCA GTTCGTGCGG TTCGACAGCG ACGCCCGAA 	A2-2FF	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

Sachdev, M., Sankaranarayanan, R., Reddanna, P., Thangaraj, K., & Singh, L. (2005). Major histocompatibility complex class I polymorphism in Asiatic lions. *Tissue antigens*, *66*(1), 9-18.

KUWAHARA, Y., KITOH, K., KOBAYASHI, R., IWATA, J., OHNE, R., HOSOKAWA-KANAI, T., ... & SASAKI, Y. (2000). Genotyping of feline MHC (FLA) class II DRB by PCR-RFLP method using group-specific primers. *Journal of Veterinary Medical Science*, *62*(12), 1283-1289.

5.4 PCR and genotyping

- ✓ Reaction volume: PCRs were performed in a reaction volume of 20 µL, containing approximately 30 ng of genomic DNA, 10 µ I of 2× PCR Buffer for KOD FX Neo, 0.75 µL of each primer (Invitrogen, Paisly, UK), 2 mM dNTPs, and 0.3 µ I of KOD FX Neo (1 U/µI) (TOYOBO, Japan)
- Reaction system: Cycling was performed using the following conditions: An initial denaturation step for 5 mins at 98° C was followed by 35 cycles of 15 s of denaturation at 95° C, 30 s of annealing at 58° C, and 20 s of extension at 68° C, followed by a final extension step for 10 min at 68° C.
- Genotyping: The lengths of microsatellite fragments were determined in an ABI 3130 automatic genetic analyzer using the Liz 500 standard and the GeneMapper 4.0 software (Applied Biosystems, United States). To increase data significance, PCR with DNA from feces was performed at least 3 times for heterozygote and 5 times for homozygote.

