Carbon Neutrality with Water

December 7, 2022

Ogeuk Kwon

Contents

■ Carbon Neutrality with Water

III Plan for future works

Climate change

I . Climate change

1. Climate change & Global warming

The century-scale average temperature of the Earth

https://www.joboneforhumanity.org/

I . Climate change 5 / 30

1. Climate change & Global warming

Climate change

Global warming worse due to the use of fossil fuels
International community aware of the seriousness of climate change

I . Climate change

2. Paris Agreement

I . Climate change 7 / 30

3. The Plan of Republic of Korea

Reduction path of national carbon emission Reduction path Carbon emission (Blue) Linear path (Green dash) Emission Average of 2018, 2019

I . Climate change

3. The Plan of Republic of Korea

The reduction scenarios of carbon emission

I . Climate change

4. Key elements for Carbon Neutrality

Five key elements

Clean power & Hydrogen

renewable energy(solar, wind, hydro) should be the central sources of energy supply

Energy efficiency

the most eco-friendly and economical energy resource

Commercial
deployment of carbon
removal
commercially deploy
future technologies,

Scaling up the circular economy

Lifecyle approach is the key to ensuring product recyclability which minimizes the resource and energy inputs.

Enhancing carbon sinks

strong carbon sinks(Land, forests, and marine ecosystems) that absorb and store CO2 \prod

Carbon Neutrality with water

1. Waterworks

Status of GHG Emissions from Waterworks Facilities(Last 5 Years)

Years	Power consumption (GWh)	Generated CO ₂ (thousand tons)	3000 2500	243	3	2663	3	2821		2544		•Power consumption (GWh)
2015	2,433	1,134	2000								•	•Generated CO2 (thousand tons)
2016	2,663	1,241	1500		1134		1241	a a	1315		1186	,
2017	2,821	1,315	1000									
2018	2,544	1,186	500									
2019	2,475	1,153	0	201	15	2016	201	17	2018		2019	

Annual power consumption and CO2 generation(Table)

GHG emission schematic diagram of waterworks Clean pumping Water GAC **High class Purificat Receiving Sedimen** Intake filter water station reservoir Water intake treatment ion bed pumping well tation well well 00 00 Water supply Intake-water conveyance Water treatment 51.25% 3.95% 44.84% (590 million t CO₂) (45 million t CO₂) (517 million t CO₂)

 Around 96% of GHG emission is from intake and supply pumping (transporting facility)

GAC : Granular activated carbon

[•]Annual power consumption and CO2 generation(Graph)

1. Waterworks

Carbon Neutral Status of K-water

K-water Energy usage

(Consumption) 1,534GWh/year (730 Million CO2 emission) (Production) 2,913GWh /year (1,338Million CO2 reduction)

Purification Plants

(Consumption) 76GWhGWh/year (35 Million CO2 emission) (Production) 16GWh/year (7Million CO2 reduction)

1. Waterworks

Al Purification plant

① Al Autonomous Operating System

 Purification process automation based on big-data and artificial intelligence

2 Energy Management System (EMS)

 Energy management system with monitoring, analysis, and control through Al

3 Adoption of high-efficiency facilities

- · Adopting high-efficiency facilities
- (Main facilities) Motors, Transformers, LED, Inverter, Water treatment facilities

(4) Improvement of pipeline facilities(pump)

- Improvement of Pump efficiency
- (inverter) Pump optimal operation for variable load with speed control
- * (Valve) Combined non-return butterfly valve
- * (etc.) Pump coating, parts improvement

Ste

p 4

1. Waterworks

Hwa-seong A.I Water Treatment Plant

Hwa-seong pilot project

Ste

Data Collection & Analysis

- 3 year data collection
- Operator Interview
- Main Factors Selection

A.I. Algorithm
Development

Facility Automation

Ste

n 2

- Machine Learning
- Deep Learning

A.I. Model Simulation Ste

n 3

8 treatment Process
 A.I. Model Simulation

Trial Operation

- A.I Modifying
- A.I Optimization
- Realtime Operation

As-is

Operator

- Human Decision making
- Experience, Expectation

"Big Data + Al" Decision making

- BigData Analysis
- Future A.I. Prediction
- Human + A.I. Operation
- √ Energy Saving √ Cost Reduction
- √ Human Error Accident Prevention

Ste

p 4

1. Waterworks

Hwa-seong A.I Water Treatment Plant

Hwa-seong pilot project

Ste

p 1
Data Collection
& Analysis

- 3 year data collection
- Operator Interview
- Main Factors Selection

A.I. Algorithm
Development

Facility Automation

Ste

n 2

- Machine Learning
- Deep Learning

A.I. Model Simulation Ste

n 3

8 treatment ProcessA.I. Model Simulation

Trial Operation

- A.I Modifying
- A.I Optimization
- Realtime Operation

As-is

Operator

- Human Decision making
- Experience, Expectation

"Big Data + Al" Decision making

- BigData Analysis
- Future A.I. Prediction
- Human + A.I. Operation
- √ Energy Saving √ Cost Reduction
- √ Human Erron Accident Prevention

2. Water Purification Plant

Carbon neutrality of water purification plants

Adopting Renewable Energy

2. Water Purification Plant

Purified water is sent to distribution reservoi

the lining method for rejuvenating the conduit

① Pipe Rejuvenating

Aged Pipe line based on the conditions

secure the water supply and reduce water friction losses

Cope with global climate change

Floating PV System Concept (Dam surface, first time in the world)

Core Technology

- Suitable PV module for water environment Mooring device to adapt the change of water levels
- ✓ Stable floating system

 ✓ Underwater cable connection to local power grid

Floating PV(Photovoltaics)

Floating PV(Photovoltaics)

✓ Eco-friendly Customized PV Module (No lead(Pb), non-acidized encapsulant(POE), improved water-proof rating)

Туре	Lead(Pb)	Encapsulant	Waterproof
Existing	Small amount of lead content	EVA	IP64
Floating	Elimination of lead	POE (non-acidized)	IP67 and over

Conducting Environmental Monitoring (Since 2011)

Monitoring items

Water quality

Plankton

Benthic

Sediment

Birds

Fish

Location	Period	Cycle	Investigation points	Item			
Hapcheon	'11~	Every month(water quality), Quarter (ecosystem)	2~4 points	Water quality (34 items),			
Boryeong	'16~	Every month(water quality), Quarter (ecosystem)	(Installation and Control	Sediment (11 items),			
Chung-ju	'17~	Every half term	points)	Aquatic ecology (fish, birds)			

^{*} Monitoring Cycle, points and period were determined by results of EIA consultation

Chungju Dam FPV

- * Monitoring points were determined by results of EIA consultation
- * Control Point : Existing Water quality Observation Site (before FPV installation)

Monitoring & Safety Results

✓ Environmental monitoring & safety evaluation - Confirmed that there is no impact on water quality and ecosystem caused by facilities

Water Quality	 Not detected any pollutants related with "Human health protection standards" in all category No difference in water quality grade before and after of installation
Sediment (heavy metals)	 Detected but below the baselines ⇒ No harmful effects for benthic organism
Plankton	 No difference in species & population by installation (Except for seasonal issues)
Fish	- Increasing species & population of juvenile fish under the floating system
Birds	 No facility damage Increasing species & population compared to the previous research data

4. Hydrothermal Energy

Hydro thermal (use the different temperature)

Hydrothermal Energy Concept

Raw water can be utilized from water source to purification plants or purification plants to distribution reservoirs

4. Hydrothermal Energy

Hydrothermal(Metropolitan water supply line)

5. Hydro Power

Hydropower

Put into hydro turbine into water pipe line

6. Tidal Power

Sihwa Tidal Power Plant

6. Tidal Power

Sihwa Tidal Power Plant

6. Tidal Power

Generation type

Single Tide-Cycle
(flood tide)

Double Cycle

Single Ebb-Cycle
(Ebb tide)

Plan for future works

Ⅲ. Plans for future works

1. Future works

As a reliable partner

K-water reducing carbon emission in water related areas

K-water strengthen its role on Carbon Neutrality

♥ Explore opportunities for cooperation and collaboration

Thank You

Drone cam on Hapcheon FPV

Thank You for your attention