ESCAP

Conference on Transboundary Air Pollution in North-East Asia Common Meeting Room (#1014), METI, Tokyo, Japan 17-19 December 2008

Session 1 The state of transboundary air pollution in Northeast Asia

Mercury Emission from Coal Combustion in Japan

Prof. Hiroshi Moritomi Gifu University, Graduate School of Engineering, ERES

Fig. Anthropogenic mercury emissions, total 2269 ton at 2000.

Combustor type	Fuel	Coal cleaning	Bottom ash	EP	FGD	Stack	
PC	Sub-bituminous	10-50%	(10%)	0-27%	-63%	10-81%	USEPA(1998.200 2)
PC	Bitumious	10-50%	(10%)	18-81%]-4]%	2-52%	USEPA(1998.200 2)
Stoker			17%	17%(Dust)		56%	Wang et al.(2000)
Small PC			7%	23%		70%	Wang et al(2000)
MSW incineration				30-60%	6-40%	15-60%	Pirrone et al.(2001)
Incineration			1.8%	13.9%	77 %	7.3%	Nakamura(1994)

Fig. Effects of Flue Gas Treatment Equipment on Hg Reduction

Table Control Technology of Mercury Emission

Technology	Efficiency	Other effects		
DeNOx(SCR)	Unknown	30-60% NO _x		
DeNOx(SCR)	SCR +Wet Scrubber	70-90% NO _x		
Low NO _x burner	Unknown	>50% NO _x		
Coal Cleaning	0-78%	48% SO ₂		
Wet scrubber	>90% Hg ⁰ (No Hg ²⁺)	80-90% SO ₂		
SCR +Wet scrubber	>80% Hg Bituminous coal	>90% SO ₂ and >90% NO _x		
Dry scrubber + EP + Baghouse	6-9% USEPA 約63%	80-90% SO ₂		
ESP	0-82% (Low temp ESP USEPA 36% Bituminous USEPA 3% Sub-bituminous	>99% PM		
Baghouse	0-73% USEPA 90% Bituminous USEPA 72% Sub-bituminous	>99% PM		
High efficiciency EP	0-50% (in testing)	>99% PM		
Wet EP	約 30% (in testing)	56% PM (in testing)		
EP + Baghouse	34-87% (in testing)	>99%(in testing)		
AC Injection	80% Bituminous+EP+COHPAC 55-60% Sub-bituminous+EP	_		
Changing fuel	>99% LNG	>99% SO ₂ and PM control; 50-75% NO _x		

Mercury emission from coal power station

	USA	Japan
Mercury in coal	85ppb	50ppb(2/3)
Mercury from Stack	54%	30%(1/2)
Coal consumption	900MT	100MT(1/9)
Mercury emission	41t/y	1.5t/y(1/27)

USA : EPA(1999), Japan : Idemitsu Kosan

Mercury content in coals used in Japan

Mean content : 47 (μ g/kg, ppb) , Range : <10 ~ 190 (μ g/kg)

Coal properties

	Proximate analysis , as received wt%			Ultimate analysis, daf wt%				ppm	ppb		
	Volatile Matter	Fixed Carbon	Moisture	Ash	С	Н	0	Ν	S	CI	Hg
Coal-A	33.1	55.4	1.7	9.8	82.8	5.3	9.8	1.6	0.6	233	114
Coal-B	27.4.	57.7	2.3	12.6	85.4	5.2	7.3	1.9	0.3	408	49
Coal-C	27.6	60.0	4.2	8.2	82.9	4.8	10.0	2.0	0.3	176	29
Coal-D	26.0	58.8	4.6	10.6	81.1	4.4	12.0	1.8	0.67	2304	44
Coal-E	40.9	41.5	3.1	14.5	78.2	5.9	13.6	1.3	1.08	176	119

1) Mercury speciation with large particles <u>at medium temperature</u>

coal A coal B coal C coal D coal E

Almost of Hg to flue gas >> BA and CA

Flue gas sampling system

2) Mercury speciation in flue gas <u>at low temperature</u>

Mercury in dust is increased with decrease in flue gas temperature.

2) Mercury speciation in flue gas for coal type

Coal D Cl rich

Coal A

Lowering temp \rightarrow Hg(p) \uparrow + Hg⁰ \downarrow Coal E with high volatile Lowering temperature \rightarrow a little Coal D with high Cl Even high temperature \rightarrow Hg⁺ Unburned carbon content Chlorine content

Condition of sorbent injection

Coal	5.0	Sorbent	P6	P4	P2
Feed rate, kg/hr	5.9	feed rate, g/hr	130°C	170°C	230°C
Residence time, s		AC from br-coal	42.5	38.9	37.1
P2(230°C)	0.706	Spent catalyst	43.0	38.0	27.8
P4(170°C)	1.25	Coal fly ash	26.9	38.0	23.9
P6(130°C)	1.88	•	l		

Sor bent			Act ivat ed car bon	Coal f ly ash	Spent cat alvst
Proximate	Moisture	wt %	12.5	1.4	0.8
analyses	Ash	wt %	4.3	66	98.3
,	Volatile	wt %	6.5	6	0.9
	Fixed carbon	wt %	76.7	26.6	0
Ultimate	Car bon	wt %	77.2	29.02	0.39
analyses	Hydrogen	wt %	1.91	0.58	0.16
, 	Nitrogen	wt %	0.22	0.62	0
	Tot al- Sulphur	wt %	0.2	0.8	0.004
	Mer cur y	wt %	17	301	<1
Size	,	μm	<125µ m	<100µ m	vary
Densit v		ka/ m3	ND	758.7	972.05

From cyclone P2=4930mm P4=8360m P6=11790mm Inside diameter=57.2mm

Trends of coal-fired power generation efficiency in each country

Emission of NOx and SO₂ from each country, g/KWh

Atmospheric deposition of mercury

Dry and wet deposition fluxes of mercury around power station site

CRIEPI : Sakata's data

<u>Conclusions</u>

Under the practical conditions of flue gas cooling process of PC boilers, the test results support the following conclusions:

- 1. Mercury transformation depended on chlorine content in coal and unburned carbon in flyash dust.
- 2. Excessive activated carbon could capture elemental mercury but a little of oxidized mercury.
- 3. When using inorganic sorbents, there was a trade-off relationship between oxidized mercury and elemental mercury and the total captured mercury was lowered.

"Earlier" is "better" "If slowing, it is not in time."

Think about what we can do !