International Conference on Transboundary Air Pollution in North-East Asia

Modeling study on relationships between regional emissions and secondary inorganic aerosol in Tokyo

Hiroshi HAYAMI Central Research Institute of Electric Power Industry

Introduction: PM_{2.5} levels in Japan

Roadside PM_{2.5} decreasing

Urban & rural PM_{2.5} stay constant around WHO AQ guideline & US AQ standard.

Chemical composition of PM_{2.5}

Secondary Inorganic Aerosol (SIA)

*Ministry of the Environment

>50% comes from NO_X and SO₂
 ammonium formed to neutralize sulfate and nitrate
 water in "unspecified" associated with SIA

To decrease PM_{2.5} in Japan

SIA is important to decrease PM_{2.5}
 more than half of PM_{2.5}
 derived from SO_X & NO_X
 How're relationships b/w NO_X/SO_X & SIA?

SO₂&NO_X emissions

Trans-boundary PM pollution

Distant emissions may influence SIA/PM_{2.5}

Simultaneous monitoring of SIA

Springtime avgs in 2000 to 2002

PM_{2.5} nitrate: [Tokyo] >> [Fukue] PM_{2.5} sulfate: [Tokyo] << [Fukue]

Modeling study

Sensitivity of SIA in TKY to regional emissions

East Asia
12 source regions
+20% emissions

~growth in three years

changes in SIA in Tokyo

air quality model
whole-year simulations

Air quality model

 CMAQ (Community Multiscale Air Quality developed by US EPA • latest version 4.7 released in Nov., 2008 • many users in US, Asia, Japan... comprehensive 3D Eulerian model emission, advection/diffusion, chemical reactions, cloud process, deposition

Simulation method

Copyright 2008 CRIEPI. All rights reserved.

Model performance: Tokyo

good for sulfate, underestimating for nitrate

Model performance: Fukue

good for sulfate, over and under for nitrate

Annual changes in Tokyo (SO₂)

variation in conc. [%] 20 15 5 Tokyo Jpn w/o Tokyo Korean P. N.Central Chn **M.Central Chn** S.Central Chn NE. Chn NW. Chn SW. Chn Twn, Mongolia Ships Volcanoes

Local emissions 20%↑
SO₂ in TKY 18.5%↑
Domestic emiss. 20%↑
SO₂ in TKY 0.9%↑
Foreign emiss. 20%↑
SO₂ in TKY <0.4%↑

Large local contribution
 primary pollutant

Annual changes in Tokyo (sulfate)

Local emissions 20%↑
SO₂ in TKY 3.8%↑
Domestic emiss. 20%↑
SO₂ in TKY 2.2%↑
Foreign emiss. 20%↑
SO₂ in TKY 6.8%↑

(local+domestic)~foreign
 secondary pollutant
 long-rage transport

Annual changes in Tokyo (nitrate)

Local emissions 20%↑
SO₂ in TKY 5.8%↑
Domestic emiss. 20%↑
SO₂ in TKY 4.7%↑
Foreign emiss. 20%↑
SO₂ in TKY 4.4%↑

local~domestic~foreign
 faster than sulfate
 transported as aerosol

Summary

20% increase in local & domestic emissions
 sulfate in Tokyo: +6%
 nitrate in Tokyo : +10%
 20% increase in foreign emissions
 sulfate in Tokyo : +7%
 nitrate in Tokyo : +4%

Caution: nonlinearity