Current Work on Integrated Assessment Modeling in China and Future Collaborations

Shuxiao Wang School of Environment, Tsinghua University December 8, 2016

- Recent control measures and emission trends
- Projection of air pollutants emissions
- Quantification of health effects
- Perspectives on future IAM collaborations

Evolution of emission standards

Application of air pollution control devices

Reduction of emissions from power plants

Although coal consumption increased 60%, the emissions of PM, SO₂, and NOx in 2015 were 9%, 15%, and 22% of that in 2006.

Coal consumption and air pollutant emissions from thermal power plants

Evolution of vehicle emission control

¹ only implemented for public fleets; ² for freight trucks and long-distance coaches, they complied with the China IV emission standard from July 2013 as required by the Ministry of Environmental Protection; ³ remote sensing test

Trends of air pollutant emissions from vehicles

Although vehicle population increased by over 5 times in the past 15 years, the national vehicle emissions started to decline:

HC and CO: peak in 2007

PM_{2.5}: peak in 2010-2011

NO_X: peak in 2013

Vehicle-related emissions in Beijing started to decline much earlier than the national level: peak in 2000-2002.

National/regional air pollution control policies

Recent policies:

- 2011, national emission control target for both SO₂ and NOx
- 2012, the 12th FYP on air pollution control for key regions
- 2012, amendment of NAQQS, including PM_{2.5}
- 2013, Air Pollution Prevention and Control Action Plan
- 2015, new Air Pollution Prevention and Control Law

Emissions trends of air pollutants, 1990-2013

Trends of coal consumption, 2000-2015

- China's coal consumption grew from 1.36 billion tons in 2000 to 4.24 billion tons in 2013, an annual growth rate of 12%.
- > National coal consumption in 2015 decreased 6.5% compared with 2013.
- > The contribution of coal to total energy decreased to 64% in 2015.

Emission reductions by the Action Plan

National emission reduction during 2013-2015, million tons

- During 2013-2015, national SO₂, NO_x and PM_{2.5} emissions were reduced by 7.6, 5.7 \geq and 2.6 million tons
- Control of key industries and boilers, shutdown of outdated factories contributed 39%, 29% and 22% of the SO₂ emission reductions.
- Control of key industries, shutdown of outdated factories and vehicle emission control contributed 63%, 20% and 9% of the NOx emission reductions. 11

- Recent control measures and emission trends
- Projection of air pollutants emissions
- Quantification of health effects
- Perspectives on future IAM collaborations

Framework for policy scenario development

Definition of emission scenarios

Base year: 2013, Future emissions: 2015, 2020, 2025, 2030

Energy Policy	End-of-Pipe Emis	ssion Control Policy
	[1] the 12 th FYP and the 2013 Action Plan	[2] Maximum Feasible Emission Controls
BAU: Current Legislation and Implementation Status as of end of 2012.	BAU[1]	BAU[2]
PC: Additional energy saving policies will be implemented, including life style changes, structural adjustments and energy efficiency improvements.	PC[1]	PC[2]

Projected energy consumption

Energy consumption by fuel

	Coal	Other renewable and nuclear
2010	68%	7.5%
2013	61%	8.3%
2030_BAU	47%	11.8%
2030_PC	44%	15.1%

Energy consumption by sector

	Industry	Transportation
2010	48%	9.0%
2013	46%	10.1%
2030_BAU	45%	16.1%
2030_PC	45%	13.1%

Projected technology shift

Power plants

Cement industry

Domestic heating (north urban) Domestic heating (north rural)

NOx control technologies for key sectors

	Removal			[1]	[2	2]
process	equipment	2010	2013	2020	2030	2020	2030
	NOC	100	77	76	76	70	0
Coal-fired industrial	LNB	0	18	18	18	20	0
grate boiler	LNB+SNCR	0	0	0	0	0	0
	LNB+SCR	0	5	6	6	10	100
	NOC	60	47	24	12	0	0
Precalcined cement	LNB	40	52	26	13	0	0
kiln ≥4000 tons/day	LNB+SNCR	0	1	30	45	60	0
	LNB+SCR	0	0	20	30	40	100
Class meduation	NOC	100	76	52	26	0	0
Glass production –	OXFL	0	16	24	56	50	0
noat process	SCR	0	8	24	18	50	100
	NOC	100	93	92	92	40	0
Sintering	SNCR	0	0	0	0	0	0
-	SCR	0	7	8	8	60	100

Penetration of Major NOx Removal Equipment in Chinese Industrial Sectors (%)

NMVOC control technologies for key sectors

Column to an true o		2010	2012	[.	1]	[2	2]
Solvent use type	Control technology	2010	2013	2020	2030	2020	2030
	No control (GB18582-2001)	0	0	0	0	0	0
Paint use in interior	Decrease of solvent contentGB18582-2008	100	97	80	45	35	0
wall of buildings	Decrease of solvent content2004/42/EC stage 1	0	3	20	45	55	0
	Decrease of solvent content2004/42/EC stage 2	0	0	0	10	10	100
Paint use in vehicle	No control (solvent-based paint)	93	90	84	61	60	0
refinishing	Sustitution with high solids or water-based paint	8	10	16	39	40	100
	No control (solvent-based paint)	89	84	65	42	33	0
Paint use in wood	Incineration	0	1	8	15	20	20
coating	Substitution with high solids paint	4	6	12	19	20	20
	Substitution with water-based or UV paint	7	9	15	25	28	60
	No control (solvent-based ink)	90	88	73	48	38	0
Offset printing	Substitution with water-based or UV ink	10	13	18	25	25	10
	Add-on control technology	0	0	10	28	38	90
	No control (solvent-based ink)	64	60	43	23	15	0
Flexography and	Substitution with low solvent or water-based ink	35	38	40	38	35	0
(for packaging)	Add-on control technology	1	3	8	20	20	0
(IOI packaging)	Substitution + add-on control technology	0	0	10	20	30	100
	No control (solvent-based ink)	85	83	71	40	34	0
C	Substitution with low solvent or water-based ink	15	18	21	33	31	0
Screen printing	Add-on control technology	0	0	8	25	33	0
	Substitution + add-on control technology	0	0	0	3	3	100
Adhesive use in wood	No control	98	95	91	74	75	0
processing	Add-on control technology	3	5	9	26	25	100
Adhesive use in	No control (solvent-based adhesive)	87	85	76	65	60	10
manufacturing of	Substitution with low solvent adhesive	13	15	24	35	40	90
shoes	Add-on control technology	0	0	0	0	0	0

Vehicle emission control

Further development of the public transportation system and improvement in vehicle emission control system

- Development of green transportation: public transportation, non-motorized traffic modes, intelligent traffic system
- Accelerating the scrappage of older vehicles (high emitters)
- > Promoting clean energy vehicles and clean transportation fuels
- > More stringent standards for vehicle emissions and fuel quality

Туре	00	01	02	03	23	04	05	06	07	0	8 ()9	10	11	12	1	3	14	15	16	17	18	1	9	20	21	22	2	3	24	25	26	2	7 2	8	29	30
Light duty vehicle	1	1	1	1	1	1	2	2	2	2	3	3	3	4	1 4	4	4	4	4			5	5	5	6	1	6	6	6	6	5 6	i i	6	6	б	6	6
Heavy duty diesel vehicle			1	1	1	2	2	2	2	3	3	3	3		3 3	3	4	4	4	5	5 4	5	5	6	6		6	6	6	6	5 6	R o	6	6	6	6	6
Heavy duty gasoline vehicle					1	2	2	2	2	2	2	2	2		2 3	2	2	2	2	2		2	2	2	2	\$	2	2	2	2	2	r g	2	2	2	2	2
Motorcycle (2&4 strokes)					1	2	2	2	2	2	2	3	3	2	3 3	3	3	3	3	3		3	3	3	3		3	3	3	3	3		3	3	3	3	3
Rural Vehicle								1	L	2	2	2	2		2 3	2	3	3	3	3		4	4	4	5		5	5	6	6	6		6	6	6	6	6
Tractors, machines											1	1	2		2 3	2	2	3A	3A	3A	3A	3E	3 3	B	3B		4	4	4	1	1		41)	4	4	4	4
Train, inland water																		3A	3A	3A	3A	38	3 3	в	3B		4	4	4	14	4		4	4	4	4	4

Numbers 1-6 represent the Euro I to Euro VI vehicle emission standards.

Numbers in black represent standards released, and numbers in red represent standards to be released in the future.

Future trends of NO_X and SO₂ emissions

- Open burning
- Off-road transportation
- On-road transportation
- Domestic_biomass combustion
- Domestic_fossil fuel combustion
- Steel
- Cement
- Other industry process
- Industry combustion
- Power plant

- On-road transportation
- Domestic_biomass combustion
- Domestic_fossil fuel combustion
- Steel
- Cement
- Other industry process
- Industry combustion
- Power plant

Future trends of PM_{2.5} and NMVOC emissions

Open burning Off-road transportation On-road transportation Domestic_biomass combustion Domestic_fossil fuel combustion Steel Cement Other is but to a

- Other industry process
- Industry combustion
- Power plant

- Recent control measures and emission trends
- Projection of air pollutants emissions
- Quantification of health effects
- Perspectives on future IAM collaborations

PM_{2.5} attributable deaths in China, 2013

Evaluate the current and future burden of disease from major air pollution sources in China (GBD MAPS)

Future trends of PM_{2.5} attributable deaths

> Despite reductions in $PM_{2.5}$ levels, all of the future scenarios are predicted to lead to increases in future deaths attributable to ambient $PM_{2.5}$, compared to 2013.

Strict control of PM levels is critical to stabilize or reduce burden in the face of changing demographics.

- Recent control measures and emission trends
- Projection of air pollutants emissions
- Quantification of health effects
- Perspectives on future IAM collaborations

Perspectives on future IAM collaborations

- To build a green economy and safe future, our collaboration and partnership to address air pollution and climate issues are needed now more than ever.
- Emission and modeling studies conducted at each country as well as East-Asia region, i.e. MICS-Asia, provide a good basis for further IAM collaborations in North-east Asia (NEA).
- The NEA IAM framework shall aim to provide cost-effective emission control strategies and to support national efforts addressing both air pollution and climate issues in future.
- **>** The target pollutants may include PM_{2.5}, O₃, GHGs and Hg.
- The core elements of the IAM framework may include but not limited to policy scenarios, impact assessment, cost evaluation, etc.

Perspectives on future IAM collaborations

Some initial thoughts on the IAM framework

- To establish a NEA science center or an expert group to facilitate the IAM collaborations.
- To develop one set of policy scenarios for NEA sub-region as well as assessment tool to enable the analysis under a same baseline.
- To build up a platform to enhance the scientific exchange and information share.

Synergies with existing efforts (MICS-Asia, CMAS-Asia, etc.)

Linkage to policies (periodic reporting and governmental consultation)

Tools under the IAM framework: an example

Air Benefit and Cost and Attainment Assessment System

Thanks for your attention!

Definition of emission scenarios

Energy scenarios	Energy scenario definition	Emission scenarios	Emission scenario definition
BAU	The BAU scenario is based on current legislations and	BAU[1]	For end-of-pipe control strategy, it is designed based on the "Twelfth Five-Year Plan for Environmental Protection" and the "Air Pollution Prevention and Control Action Plan".
	implementations status (until the end of 2012)	f BAU[2] BAU[2] BAU[2] For end-of-p that the technologies by 2030, re	For end-of-pipe control strategy, it assumes that the technically feasible control technologies would almost be fully applied by 2030, regardless of the economic cost.
	assumes new energy- saving policies will be released and enforced, including life style	PC[1]	The PC[1] scenario assumes the same energy saving policy as PC scenario and the same end-of-pipe control strategy as BAU[1].
PC	changes, structural adjustment and energy efficiency improvement.	PC[2]	The PC[2] scenario is an aggressive scenario using the same energy saving policy as PC scenario with nearly maximum feasible reductions of emissions.

Driving forces and service demand

	Cur	rent	BA	U	Р	C
	2010	2013	2020	2030	2020	2030
GDP (2005 price)/billion CHY ^a	31165	39486	65741	117718	65741	117718
Population/billion	1.34	1.36	1.44	1.47	1.44	1.47
Urbanization rate/%	49.7	53.7	58	63	58	63
Power generation/TWh	4205	5398	6931	8506	6733	8000
Share of coal-fired power generation/%	75.3	66.4	56.7	48.3	48.9	41.3
Crude steel yield/Mt	627	779	710	680	610	570
Cement yield/Mt	1880	2417	2001	2050	1751	1751
Urban domestic building area per capita/m ²	23	23	29	33	27	29
Rural domestic building area per capita/m ²	34.1	37	39	42	37	39
Vehicle population per 1000 persons	58.2	93.6	191.2	380.2	178.5	325.2
Share of new and renewable energy/% ^b	7.5	8.3	10.5	11.8	13.1	15.1

Disease burden of PM_{2.5} pollution in China

Sector contributions to population-weighted ambient $PM_{2.5}$ and deaths, 2013

Subsector	Mean PM _{2.5}	Deaths
All ambient PM _{2.5}	54.3	916,000
Total Coal	21.9	366,000
Power plant coal	5.2	86,500
Industrial coal	9.4	155,500
Domestic coal	2.4	41,000
Non-Coal Industry	5.6	95,000
Domestic biofuel	8.0	136,500
Traffic	8.2	137,500
Open burning	4.1	70,000

- ➤ Coal combustion contributes 40% of PM_{2.5} exposure and 366,000 deaths.
- > Traffic (vehicles) results in 137,500 deaths.
- Domestic biofuel burning results n 136,500 deaths.

Emission trends and mitigation options

Atmos. Chem. Phys., 14, 6571–6603, 2014 www.atmos-chem-phys.net/14/6571/2014/ doi:10.5194/acp-14-6571-2014 © Author(s) 2014. CC Attribution 3.0 License.

Emission trends and mitigation options for air pollutants in East Asia

 $S. X. Wang^{1\,2}, B. Zhao^1, S. Y. Cai^1, Z. Klimont^3, C. P. Nielsen^4, T. Morikawa^5, J. H. Woo^6, Y. Kim^6, X. Fu^1, J. Y. Xu^1, J. M. Hao^{1\,2}, and K. B. He^{1,2}$

 ¹State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
 ²State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
 ³International Institute for Applied System Analysis, Laxenburg, Austria
 ⁴Harvard China Project, School of Engineering and Applied Sciences, Harvard University, 29 Oxford St, Cambridge, MA 02138, USA
 ⁵Japan Automobile Research Institute, Tsukuba, Japan
 ⁶Department of Advanced Technology Fusion, Konkuk University, Seoul, South Korea
 Correspondence to: S. X. Wang (shxwang@tsinghua.edu.cn)

Received: 18 December 2013 – Published in Atmos. Chem. Phys. Discuss.: 27 January 2014 Revised: 17 May 2014 – Accepted: 19 May 2014 – Published: 1 July 2014

Definition of energy scenarios and emission scenarios

Energy Scenario	Energy Scenario Definition	End-of-pipe Control Strategy	End-of-pipe Control Strategy Definition	Emission scenario
		Baseline ([0])	Current policies and current implementation status (as of the end of 2010).	BAU[0]
Business as Usual (BAU)	Current policies and compliance (as of the end of 2010) are assumed.	Progressive ([1]) Maximum Feasible Reduction	New pollution control policies are implemented in China, representing progressive approach towards future environmental policies. For the other countries in East Asia, the assumptions of the strategy [1] are exactly the same as strategy [0]. Technically feasible control technologies would be fully applied	BAU[1] BAU[2]
		([2])	by 2030.	
	New energy-saving policies are released	Baseline ([0])	See the descriptions above.	PC[0]
Alternative Policy	and enforced more stringently, including	Progressive ([1])	See the descriptions above.	PC[1]
Scenario (PC)	life style changes, structural adjustment and energy efficiency improvement.	Maximum Feasible Reduction ([2])	See the descriptions above.	PC[2]

Scenarios for countries other than China

- Our BAU and PC scenarios are consistent with the energy pathways of the reference and 450-ppm scenarios in Shindell et al. (2012), and UNEP and WMO (2011).
- The reference scenario is based on current energy and climate-related policies, the 450-ppm scenario explores the global energy consumption if countries take coordinated action to restrict the global temperature increase to 2°C.
- Our control strategies [0] and [2] are consistent with the control strategies of the reference scenario and the maximum feasible reduction scenario in UNEP and WMO (2011), respectively. The control strategy [1] has the same assumptions as control strategy [0].

Projected energy consumption

End-of-pipe control techniques: power sector

Penetrations of major control techniques in power sector in China (%)

Enorgy technology	Control	2010	2012	[1]	[2	2]
Energy technology	technology	2010	2015	2020	2030	2020	2030
Cuata hailang	CYC (PM)	12	10	0	0	0	0
Grate bollers	WET (PM)	88	90	100	100	100	100
	WET (PM)	0	0	0	0	0	0
	ESP (PM)	93	85	90	80	80	0
	HED (PM)	7	15	10	20	20	100
Pulverized coal	FGD (SO ₂)	88	93	95	97	100	100
combustion	LNB (NO _X)	75	38	19	10	8	0
	LNB+SNCR (NO _X)	1	2	4	5	6	0
	LNB+SCR (NO _X)	12	54	74	84	86	100
	WET (PM)	0	0	0	0	0	0
	ESP (PM)	100	85	90	80	80	0
Fluidized bed	HED (PM)	0	15	10	20	20	100
combustion	CFB-FGD (SO ₂)	53	53	66	80	100	100
	SNCR (NO _X)	0	0	3	8	0	0
	SCR (NO _X)	0	0	15	51	100	100
	LNB (NO _X)	74	70	60	35	50	0
Natural gas power	LNB+SNCR (NO _X)	1	0	3	6	5	0
	LNB+SCR (NO _X)	5	15	30	55	45	100

Vehicle emission factors significantly reduced

Increasingly stringent emission standards have substantially reduced vehicle emission factors, expect for NO_X emissions from heavy-duty diesel trucks.

Light-duty gasoline vehicles

Note: Assessed by the EMBEV 2.0 model developed by Tsinghua University.

Source: Zhang et al., Atmos. Environ., 2014, 89. 216-229.

Growth of vehicle population in China

- > In 2009, China became the largest market with the vehicle sales worldwide.
- > In 2013, China became the only country with sales of more than 20 million.

Challenges and pathways: vehicle pollution

> Enhance the emission control of non-road mobile sources (NRMS)

地区	车型	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
美国 U.S.	非道路柴油机 Non-road diesel engine			1	Tier 3			Tier 3 i	interim	Tie	er 4
<mark>欧盟</mark> EU	非道路柴油机 Non-road diesel engine			Sta	age 3A			Stage	e 3B	Stag	ge 4
	重型柴油机 Heavy-duty diesel engine	c	国2 China 2			E Chi	国3 ina 3			国4 China	1 4
中国 China	非道路柴油机 Non-road diesel engine	7 No er	C控制要 mission c regulatio	求 control m	国 1 China	. 1		(国2 China 2		
	船用柴油机 Marine diesel engine			天	控制要求	λ No emi	ission co	ntrol regu	lation		

NRMS emission standards

Application of NOX control technologies

Natural gas power plants 100% 90% 80% 70% LNB+SCR 60% LNB+SNCR 50% LNB 40% 30% NOC 20% 10% 0% 2020101 2030101 2020/71 2030/17 2020(2) 2030(2) 2010 2005

Future trends of NOx and SO2 emissions

Future trends of PM2.5 and NMVOC emissions

Challenges: multiple pollutants vs multiple effects

- In the next 20 years, China needs to push hard to mitigate emissions of both CO₂ and multiple air pollutants.
- Addressing multi-pollutants multi-effects provides opportunities for innovation and to build the clean energy economy of the future—a future that's safer and healthier for our children.

Economic growth in China, 1998-2013

Multi-pollutant emission inventory for China

- **Years:** 1990-2014
- Spatial domain: Mainland China
- Categories/Sectors: ~800 anthropogenic sources, aggregated to four sectors (Power, Industry, Residential, Transportation)
- Species: SO₂, NO_x, NMVOC, NH₃, BC, OC, PM_{2.5}, PM₁₀, CO and CO₂
- VOC speciation: ~600 individual species, lumped to various mechanisms (SAPRC99, SAPRC07, CB05, etc.)
- Spatial resolution: user defined

Air Pollution Prevention and Control Action Plan

China's air quality management has <u>shifted</u> from targeting "Emissions Reduction" (Technology-based) to targeting "<u>Air Quality</u>" (Risk-based)