

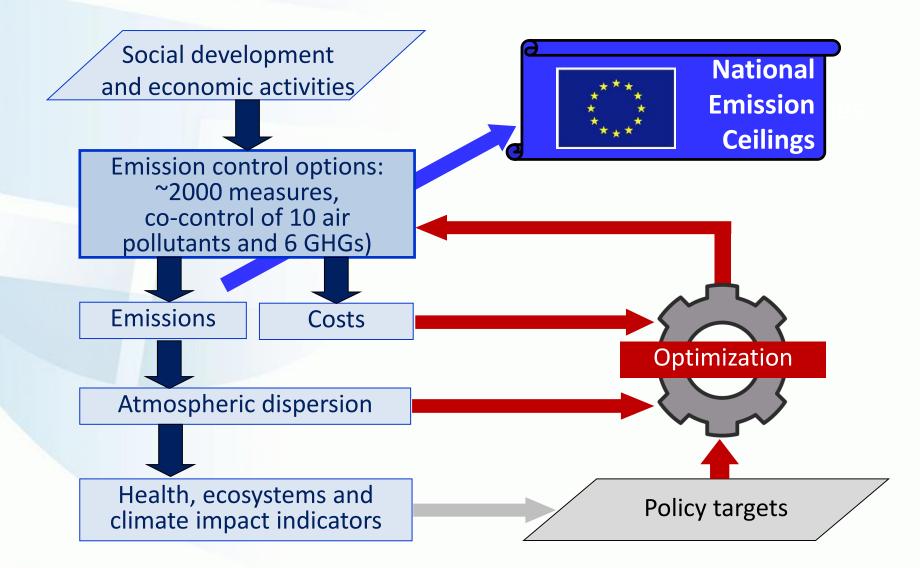
Experience with application of IAMs in Europe

Z. Klimont and M. Amann AIR program International Institute for Applied Systems Analysis

Roundtable on the Future of North-East Asia Clean Air Partnership Seoul, Republic of Korea, July 4, 2019

IIASA, International Institute for Applied Systems Analysis

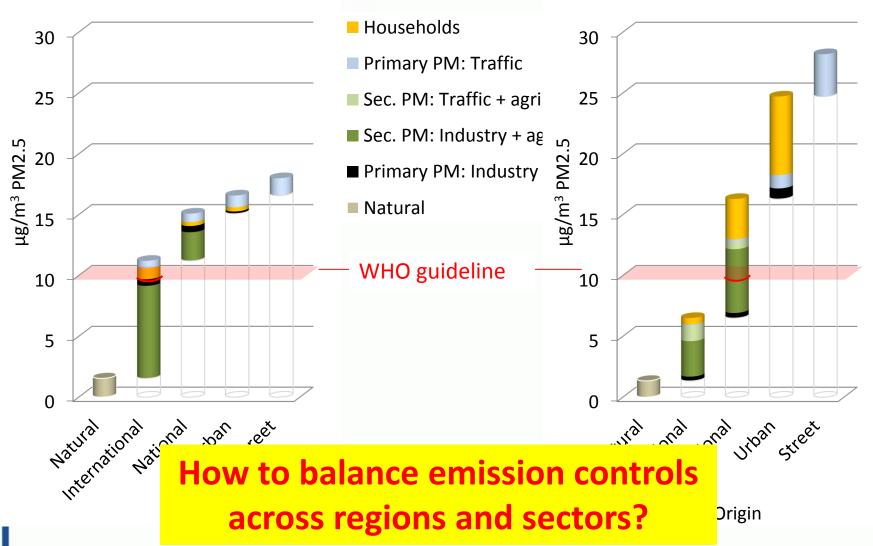
insight science for global


Purpose of IAMs in UNECE LRTAP and revision of the EU air quality policy

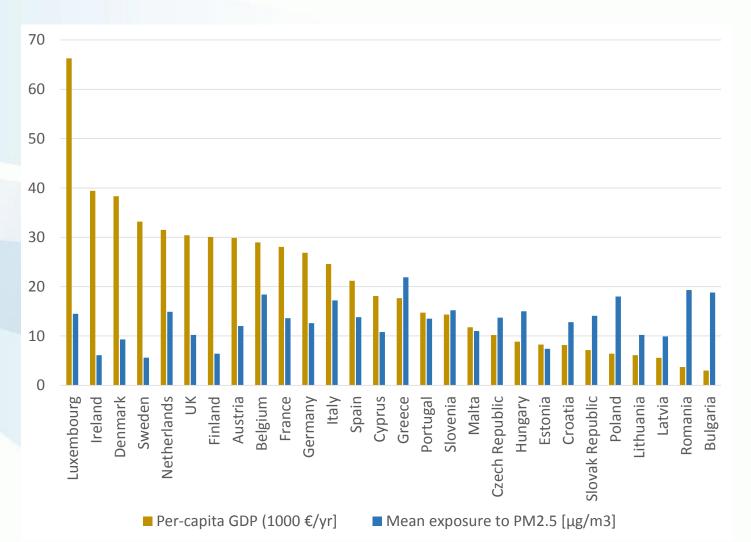
- Assess future situations based on current trends and policy interventions
- Identify cost-effective and win-win packages of policy interventions
- Reveal multiple benefits of policy interventions for diverse stakeholders

GAINS - Greenhouse gas–Air pollution Interactions and Synergies:

A tool for a systematic assessment of the cost-effectiveness of emission control strategies

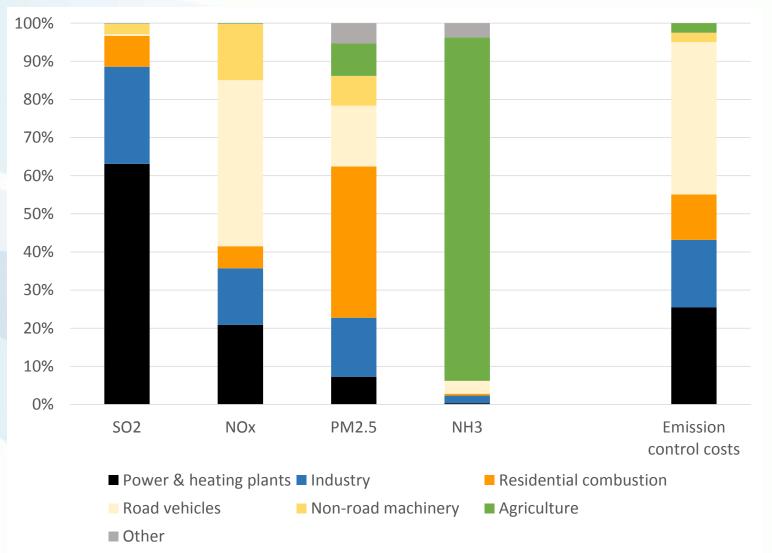


There are large differences in the contributions of different sources to ambient PM2.5


Netherlands

6

Poland



There are large differences among countries in economic wealth and pollution

5

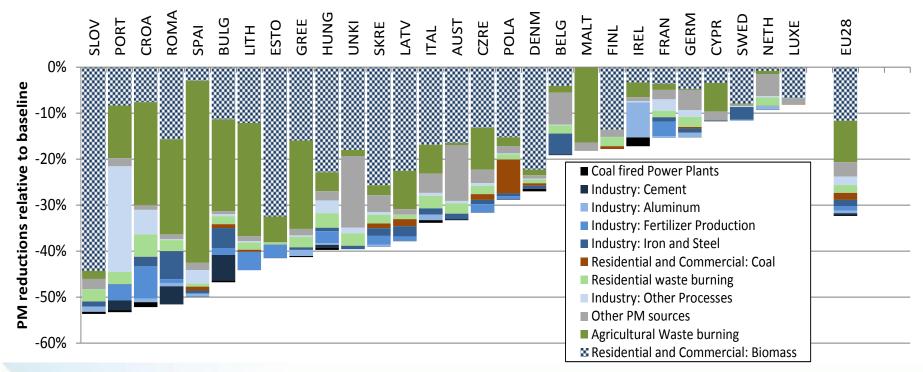
There are large differences in sectoral emissions, already applied emission controls, and costs

9

Source: GAINS/IIASA for 2005

GAINS:

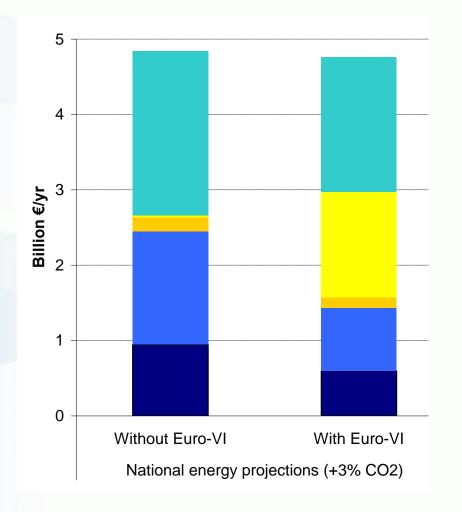
A multi-pollutant/multi-effect systems perspective


	PM (BC, OC)	SO ₂	NO _x	VOC	NH ₃	CO	CO ₂	CH_4	N ₂ O	HFCs PFCs SF ₆
Health impacts: PM (Loss in life expectancy)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
O_3 (Premature mortality)			\checkmark	\checkmark		\checkmark		\checkmark		
Vegetation damage: O_3 (AOT40/fluxes)			\checkmark	\checkmark		\checkmark		\checkmark		
Acidification (Excess of critical loads)		\checkmark	\checkmark		\checkmark					
Eutrophication (Excess of critical loads)			\checkmark		\checkmark					
Climate impacts: Long-term (GWP100)	(√)	(√)	(√)	(√)	(√)	(√)	\checkmark	\checkmark	\checkmark	\checkmark
Near-term forcing	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	(√)	\checkmark	(√)	(√)
Carbon deposition to the Arctic and glaciers	\checkmark									

Cost-benefits vs cost-effectiveness analysis

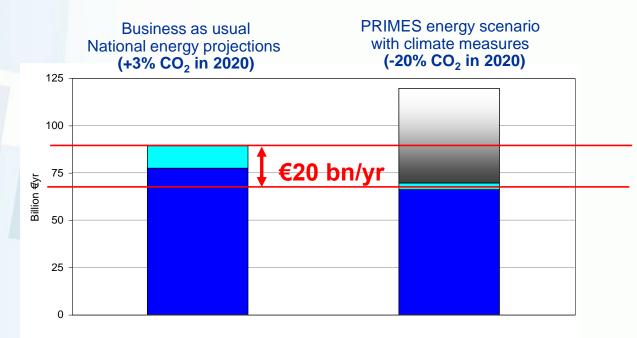
Cost-benefits analysis Cost-effectiveness analysis Emission control For which measures Which set of measures are the (marginal) measures delivers monetized **benefits** the policy target larger than their at least cost? costs? Emission control costs Physical benefits e.g., air quality, prem. deaths **Policy choice: Targets** (e.g., achieve AQ limit values, or reduce health impacts by 50%) **Policy choice:** Monetization of Monetary value (€) of (health) benefits (€/life) human life, ecosystems, etc. Monetized benefits (€/year)

6


Cost-effective PM2.5 emission reductions for a 50% reduction of health impacts, by sector and country

Key measures:

- Modern biomass stoves with lower emissions and higher energy efficiency
- Enforcement of ban on agricultural residue burning
- Stricter PM controls on some industrial processes


Emission control costs for achieving the EU air quality targets

Power sector Industry Domestic Transport Agriculture

Climate policies do not only save lives, but also money for air pollution controls

Air pollution control costs for achieving the EU air quality targets

Indicative costs for changes in the energy system to meet climate and energy targets

Costs for further measures to achieve the targets of the EU Thematic Strategy on Air Pollution

Costs for implementing current air pollution legislation

Asia: Further air quality improvements require a re-orientation of current policies

- Vehicle emission standards
- TSP(+SO₂+NO_x) controls at large plants

Compliance with post-2015 legislation

SO₂+NO_x controls at stationary sources

Conventional PM controls - Asia-wide

'Next-stage' air quality measures

- Fertilizer use, manure management
- Open burning of waste and biomass
- Forest fires, I&M of vehicles

Development priority measures

- Clean cooking fuels, renewable energy
- Energy efficiency, waste management
- Public transport and electric vehicles

Asia: The top 25 clean air measures have important co-benefits on climate

70 Mean population				Climate forcers			
	exposure to PN	v12.5		CO ₂	CH_4	BC	
60				Relative to 2015			
50			Current legislation baseline	+16%	+17%	-24%	
(_€ ⊔ 40	_	-		Relative to baseline 2030			
40 مرتعی (mg/m ₃) 00 س	WHO Interim Target 1		Conventional controls	0%	0%	-8%	
-			'Next stage' measures	0%	-29%	-56%	
20							
10	WHO Guideline		Development priority measures	-19%	-44%	-72%	
0	2015	2030					

Asia: The top 25 clean air measures have important co-benefits on the SDG sustainable development goals

70 Mean population				Clir	nate for	SDG	
	exposure to P	M2.5		CO ₂	CH_4	BC	benefits
60			Rel	ative to 2			
50			Current legislation baseline	+16%	+17%	-24%	3 mm -₩
(_۳ 40			Relative	to baseli			
40 40 30 30	WHO Interim Target 1	HO Interim Target 1	Conventional controls	0%	0%	-8%	3 ∰ -₩
20 So			'Next stage' measures	0%	-29%	-56%	3 micm ₩/↓ 2 micr
10	WHO Guideline		Development priority measures	-19%	-44%	-72%	3 mm 2 mm 13 mm 15 mm
٥							
0	2015	2030					

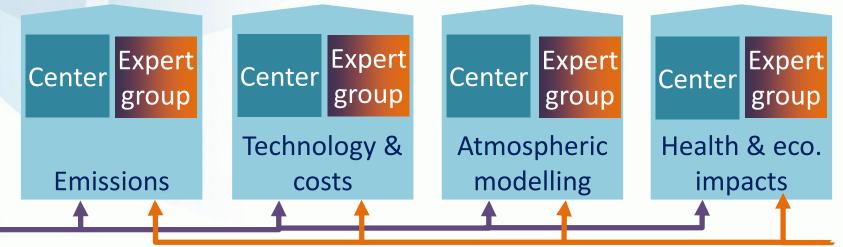
Utilizing IAM results to support science-based, policy-oriented cooperation

CIAM (Center for Integrated Assessment Modelling): ingredients for success

- Open access to model and data
- Regular scientific peer review
- Data input: Structured data input from WGs/centers approved by consensus
- Regular reviews of key outcomes by TFIAM
- *Regular participation of CIAM in other working groups/scientific networks*
- Regular consultations with national experts and other stakeholders

Center or Ensemble approach?

• Originally three IAMs in Europe - Now links to national analyses/models


Policy analysis: Institutional arrangements in Europe

Policy negotiations (LRTAP/EU Commission/Parliament/Council)

Expert group/Task Force on Integrated Assessment Modelling

Policy options scenarios

Center for Integrated Assessment Modelling GAINS

Scientific community

5