

Roundtable on the Future of North-East Asia Clean Air Partnership

Integrated Assessment Modeling: approaches and applications in China

Shuxiao Wang

Tsinghua University

4 July 2019, Seoul, Republic of Korea

control cost

Examples of widely-used IAM: GAINS

GAINS Online

Greenhouse Gas - Air Pollution Interactions and Synergies

http://gains.iiasa.ac.at/

Many traditional air pollutants and greenhouse gases have common sources. Their emissions interact in the atmosphere, and—jointly and individually—cause a variety of harmful environmental effects at the local, regional, and global scales.

The GAINS model explores cost-effective emission control strategies that simultaneously tackle local air quality and greenhouse gases so as to maximize benefits at all scales.

This GAINS tool offers three ways to reveal policy interventions with multiple benefits:

- Simulation of the costs, health and ecosystems benefits of user-defined packages of emission control measures;
- Cost-effectiveness analysis to identify least-cost packages of measures that achieve user-defined policy targets; and
- Cost-benefit assessments that maximize (monetized) net benefits of policy interventions.

Examples of widely-used IAM: ABaCAS

http://www.abacas-dss.com/

Applications of ABaCAS in China

Key components of IAM: Scenario analysis

Integrated assessment modeling for policy scenario:

(a)Projections of emission scenarios by considering socialeconomic drivers, emission control options, and baseline emissions

Countries include China, DPRK, Mongolia, Japan and ROK

Scenarios are based on the combination of end-of-pipe control measures and energy-saving policies

Key components of IAM: Scenario analysis

- BAL the baseline emissions of 2014
- EOP with maximum application of end-of-pipe measures
- *REN -* with maximum application of both end-of-pipe and energy polices

- Under EOP scenario, the emission of SO₂, NO_x, primary PM_{2.5}, and NMVOCs will decrease by 69.2%, 56.1%, 53.8%, and 56.6%, respectively;
- Under REN scenario, the emission of SO₂, NO_x, primary PM_{2.5}, and NMVOCs will be reduced by 89.7%, 89.9%, 94.6%, and 74.0%, respectively

Zhang et al., 2019, Estimation of the abatement potential and costs of air pollution emissions in China, submitted

Key components of IAM: AQ assessment

Integrated assessment modeling for policy scenario:

- (a) Projections of emissions by considering social-economic drivers, air pollution control measures, and baseline emissions
- (b) Assessments of air quality improvements under certain emission scenarios using CTMs or other source-receptor models

Change in China's emissions and annual average PM_{2.5} concentration between 2013 and 2017

Ding et.al. 2019. Estimated contributions of emissions controls, meteorological factors, population growth, and changes in baseline mortality to reductions in ambient PM2.5 and PM2.5-related mortality in China, 2013–2017. Environ. Health. Persp.

Key components of IAM: AQ assessment

Response Surface Model (RSM): Provide Realtime AQ Response to Emissions Control

Zhao, et al., 2015, <u>Assessing the nonlinear response of fine particles to precursor emissions: development and application of</u> <u>an extended response surface modeling technique v1.0.</u> Geoscientific Model Development, 8(1), 115-128

Key components of IAM: Cost/Benefit

Integrated assessment modeling for policy scenario:

- (a) Projections of emissions by considering social-economic drivers, air pollution control measures, and baseline emissions
- (b) Assessments of air quality improvements under certain emission scenarios using CTMs or statistical models
- (c) Cost and/or benefits analysis by estimating the control costs and the environmental/health benefits of emission reductions

ICET 0.15			
Filo Project About			
\bigcirc \bigcirc \bigcirc			
Pollutant control:		System Input System Output	
Shanghai Jiangsu Zheijang Other		Summary Information Regiona	nai Level RSM Control Factor Chart
PowerPlant	*	Region All regions	Changhai@eurorDiant (Changhai@emeetic
NOx Emission Reduction (%)	55.7	V Shanghai V Jiangsu	Shanghai/Transport Shanghai/Industry Shanghai/Area Jiangsu/PowerPlant Jiangsu/Pomestic Jiangsu/Transport
502 Emission Reduction (%)	31.4	Other	Jiangsu/Area Zhejiang/PowerPlant Zhejiang/PowerPlant Zhejiang/Pransport Zhejiang/Industry
PM25 Emission Reduction (%)	20.1	Pollutant II All Pollutants	2.5
Domestic		NOx	
NOx Emission Reduction (%)	29.7	9 SO2 9 PM25	2.0
SO2 Emission Reduction (%)	48.5		
PM25 Emission Reduction (%)	19.6	Sector V All Sectors	§ 1.5
Transport		Domestic =	
NOx Emission Reduction (%)	43.7	V Industry +	
SO2 Emission Reduction (%)	48.5	Emissions	
PM25 Emission Reduction (%)	65.5	Control Cost	0.5
NOx Emission Reduction (%)	29.7		
502 Emission Reduction (%)	48.5		
			sam show show show about the
B	lack Next	U	

ICET: Provide emission control cost analysis and estimate

BenMAP-CE: Evaluate health impacts & economic benefits estimate

Key components of IAM: Cost/Benefit

Integrated assessment modeling for policy scenario:

- (a) Projections of emissions by considering social-economic drivers, air pollution control measures, and baseline emissions
- (b) Assessments of air quality improvements under certain emission scenarios using CTMs or statistical models
- (c) Cost and/or benefits analysis by estimating the control costs and the environmental/health benefits of emission reductions

About 287,000 deaths per year in China were avoided between 2013 and 2017 due to the Action Plan, with an estimated benefits of 3,762 billion CNY during 2013-2017, which was much higher than the total investment in the Action Plan (1,840 billion CNY)

Ding et.al. 2019. Estimated contributions of emissions controls, meteorological factors, population growth, and changes in baseline mortality to reductions in ambient PM2.5 and PM2.5-related mortality in China, 2013–2017. Environ. Health. Persp. 11

Using IAM for source apportionment

Total PM2.5 by Province & Breakdown of Major Sources – 2013

GBD MAPS China Report, 2016

Ma et al, Atmos Chem and Phys, 2017, 17(7): 4477-4491

Using IAM for source apportionment

Spatial and seasonal variation of local/regional emission influences on PM_{2.5}

Transport of air pollutants among 31 provinces in China

Using IAM to evaluate control policies

Using IAM to evaluate control policies

Case study: which measure was more effective in reducing $PM_{2.5}$ and its related exposure in China during 2005-2015?

Integrated population-weighted exposure to $PM_{2.5}$ (IPWE): weighted sum of $PM_{2.5}$ concentrations in all microenvironments people spend time.

AAP: ambient air pollution. HAP: household air pollution

Using IAM to evaluate control policies

Electricity Industrial process Industrial combustion

Domestic combustion Transportation

Solvent use Agriculture Open burning

Household-fuel use shall be highly prioritized in air pollution control policies, considering its effects on PM_{2.5} exposures.

Zhao et al., 2018, Proceedings of National Academy of Sciences

Using IAM to optimize control options

Using IAM to optimize control options

S1: only control PM_{2.5}

S2: control both O₃ and PM_{2.5}

Optimal control pathway to achieve certain concentration:

- S1: NOx(-5%), SO2(-75%), VOC(-25%), PM(-85%), NH3(-65%)
- S2: NOx(-75%), SO2(-75%), VOC(-55%), PM(-85%), NH3(-5%)

Xing et al., 2019, Least-cost control strategy optimization for air quality attainment of Beijing–Tianjin–Hebei region in China, Journal of Environmental Management

Using IAM results for policy development

Policy and implementations

Proposed IAM approaches under NEACAP

Aims:

utilizing IAM as a practical tool to help partners identifying cost-effective emission reduction pathways and measures for air pollution issues of their nation and to assist the mitigation of air pollutants at both nations and sub-regions.

Proposed approach:

Taking an "ensemble" approach that builds on model results from the combination of work by multi-models/multi-teams to extensively utilize model capacities from diverse groups.

Proposed IAM approaches under NEACAP

Synergies with existing efforts (MICS-Asia, CMAS-Asia, etc) Linkage to national target and policies (periodic reporting and governmental consultation)

- To establish a NEA technical center and/or an working group to facilitate the IAM research collaborations.
- To build up a platform to enhance the scientific exchange, capacity building and trainings among partners.
- To develop a database of emission control measures and evaluate the cost-benefit of applying these measures for NEA nations to serve as a reference for policy development.
- To provide science-based clean air solutions utilizing IAM approach considering the emission and modelling uncertainties and national social-economic circumstances

Think Globally

Act locally

Thanks for your attention!