Workshop on Tranboundary Air Pollution in North-East Asia

Technical and Policy Issues for Addressing SO₂ Emission Regulations

James J. Qin, Ph.D.

HJI Group (USA)

10 November 2011, Incheon, ROK

Outline

- Introduction
- Technical Issues
- Policy Issues
- Summary

Introduction

- Economic development in Northeast Asia countries has been growing;
- Demand and generation of electric power has also been increasing;
- Majority of increased power generation comes from coal-fired power plants;
- Coal is the primary fuel in PRC and Mongolia;
 - In Mongolia, over 98% of electricity is generated by coalfired power plants
 - In China, the proportion of coal-fired power generation is around 68% of the total generation

Introduction (cont)

- SO₂ emissions have been increasing and will continue the increasing trend in coming years;
- SO₂ emissions and acid rain have caused serious environmental damages.
- Trans-boundary air pollution in Northeast Asia has long been recognized as a serious issue.
- Action is urgently needed to deal with acid rainrelated environmental impacts and the pollution that impacts other countries in the Northeast Asia subregion under certain climate conditions.

Project Summary

- Project Title: "Mitigation of Trans-boundary Air Pollution from Coal Fired Power Plants in Northeast Asia" (ADB TA 6371-REG)
- Executing Agencies:
 - China Electricity Council, PRC
 - Ministry of Nature, Environment and Tourism, Mongolia
- HJI Group (USA) was selected as the consulting firm through international bidding process
- Project was kicked off in March 2011, 4 workshops were held (2 in Mongolia and 2 in PRC)
- 2 international experts, 2 experts from Mongolia, 4 experts from PRC

Objectives of TA

- Reduce trans-boundary air pollution
- Enhance environmental cooperation among countries
- Improve technical capacity and knowledge transfer
- Promote capacity for management of coal-fired power plant emissions

Tasks under the Project

- Assess SO₂ and CO₂ emissions from power plants in Mongolia
- Review emission standards from other countries
- Propose emission standards for power plants in Mongolian
- Co-benefit approach strategy and mitigation plan for SO₂ and CO₂ emissions
- Workshops for knowledge transfer and information dissemination

Technical Issues on SO₂ Emissions

FGD Technologies

- SO₂ emissions from power plants can be controlled using flue gas desulphurization (FGD) technologies
- Many FGD technologies available commercially for SO₂ emission control: wet, semi-dry, and dry FGD processes.
- Wet Processes: Limestone gypsum; sea-water washing; ammonia scrubbing; Wellman-Lord process.
- Dry Processes: Circulating fluidized-bed (CFB); spray dry; duct spray dry; furnace sorbent injection; sodium bicarbonate injection.

FGD Technology Comparison

Wet Process and Dry Process Comparison

FGD Type	Suitable Scale	Efficiency (%)	S in Coal (%)
Wet technology	100-1,000 MW	90-98	Up to 5%
Dry technology	10-300 MW (1 Unit); Up to 500 MW (multiple units)	>93	Under 2%

Wet FGD Process: Limestone Gypsum

Wet FGD Process: Limestone Gypsum

- Flue gas is treated with limestone slurry in order to remove the SO₂ and neutralize it
- Final product is gypsum
- Technology has evolved & improved over 30 years
- SO2 removal efficiency can be high to 95%
- The most common FGD process worldwide and has 85% share in Chinese FGD market
- Capital cost is high, but lower through-life cost for large inland plant with high sulphur fuel

ADB

FGD Technology: Sea Water Washing

FGD Technology: Sea Water Washing

- Use untreated sea water to neutralize the SO₂ and scrub the flue gas;
- After scrubbing, water is treated with air to reduce its chemical oxygen demand and acidity, and then discharged back to the ocean.
- Advantages: no solid sorbent required as a reagent; plant design is relatively simple.
- >90% SO₂ removal for fuel sulfur content is below 1.5%.
- Disadvantage: limited to use at coastal sites.
- 3.5% share in Chinese FGD.

FGD Technology - Ammonia Scrubbing

- Works similar to limestone gypsum process except aqueous ammonia is used as scrubbing agent.
- SO₂ is removed from the flue gas by reaction with ammonia, and the final product is ammonium sulfate.
- Advantage: no wastewater discharge.
- Disadvantage: ammonia is expensive and potential risks from ammonia.

FGD Technologies - Wellman-Lord

- Wellman-Lord Process is regenerative, i.e., the active reagent used for removal of SO₂ from the flue gas is regenerated in a second process stage, and returned to the first stage (absorber tower) for re-use.
- High capital cost and operation cost.
- Not widely used.

Dry FGD Technology - CFB

ADF

FGD Technology - CFB

- Flue gas passed through a dense mixture of lime, reaction products, and sometimes fly ash, and removes the SO₂, SO₃, and HCl
- Final product is a dry powdered mixture of calcium compounds
- The process has been commercially used in 1980s and China started to use it in mid-1990s
- Simplicity, higher performance, lower space requirement, and lower cost
- Its share is 5.1% in China FGD and increasing

FGD Technology - Spray Dry

FGD Technology – Spray Dry

- Concentrated lime slurry is injected into the flue gas, to react with and remove acidic compounds.
- Final product is a dry powdered mixture of calcium compounds
- Its efficiency is about 90%
- One of the most well-developed technologies
- It is suitable for low and moderate sulphur fuel
- It has 3.5% in Chinese FGD market

FGD Technology - Duct Spray Dry

FGD Technology – Duct Spray Dry

- Same process as conventional spray-drying, except that the spray-dryer vessel is omitted, and lime slurry is sprayed directly into the duct.
- Suitable for low and moderate sulphur fuel.
- Its share is <1% in Chinese FGD market.</p>

Other FGD Technologies

- Dry Processes: Furnace sorbent injection;
 - > Its efficiency is about 90%.
 - It is suitable for low and moderate sulphur fuel.
 - Its share is <1% in Chinese FGD market.</p>
- Dry Processes: Sodium bicarbonate injection
 - Direct injection of dry sodium bicarbonate into the flue gas duct
 - Its share is <1% in Chinese FGD market.</p>

FGD Applications in Mongolia

- Sulphur content in coal reserves in Mongolia is not too high
- Coal-fired power plants are very old
- No FGD device in operation in Mongolia
- More on this in a later session.

Policy Issues on SO₂ Emission Standards

SO₂ Emission Standard in Mongolia

- The current emission standards for coal-fired boilers in power plants in Mongolia were established in 2008 (MNS5915:2008).
- Mongolia's current emission standards are based on emission measurements from existing boilers without strong rationale to justify these standards;
- SO₂ emission limits are from 615 1931 mg/m³
- New standards have been developed to be adopted by the Mongolian authorities.
- The proposed new SO₂ limits: 400 mg/m³ for urban areas and 600 mg/m³ for remote areas.

Policy Issues on SO₂ Control - PRC

- FGD R&D started in 1970s and 1980s
- First FGD unit was put into service in 1991
- More advanced FGD technologies were introduced into China in the 1990s.
- By the end of 2000, the operating power generation units with FGD reached 5 GW

SO₂ Control Progress in PRC

Policy Issues – Standard in PRC

- Emission standard for power industry in PRC was first introduced in 1991 (GB13223)
- The standard was revised in 1996 and 2003
- New standard has been released and will become effective in January 2012.

SO₂ Emission Control – New Standards

- SO₂ emission limit for new plants will be reduced from current 400 mg/m³ to 100 mg/m³;
- All coal-fired power plants must install FGD to meet the new SO₂ emission limits.
- Existing coal-fired units equipped with FGD also need to upgrade FGD to meet the SO₂ emission limit;
- Estimated cost for meeting new SO₂ limits will be 65 billion RMB.

SO₂ Emission Control Policy During 12th FYP Period

- The overall annual SO₂ emissions will be controlled to around 8 million tons from power sector;
- New non-fossil fuel power generation capacity will reach 220 GW;
- Shutdown small, inefficient and polluting power plants;
- Promote unit capacity of 600 MW and more to improve efficiency; and
- Promote CHP for district heating systems.

Summary

- SO₂ emissions are increasing every year due to increased electric power generation from coal-fired power plants;
- SO₂ emissions can be effectively controlled using mature technologies;
- Countries in Northeast Asia have established policies to address SO₂ emission from coal-fired power plants;
- SO₂ emission standards are getting tighter; and
- SO₂ emission per unit electricity generated is decreasing.

Thank You

James Qin
jmqin@hjigroup.com
Vice President

HJI Group