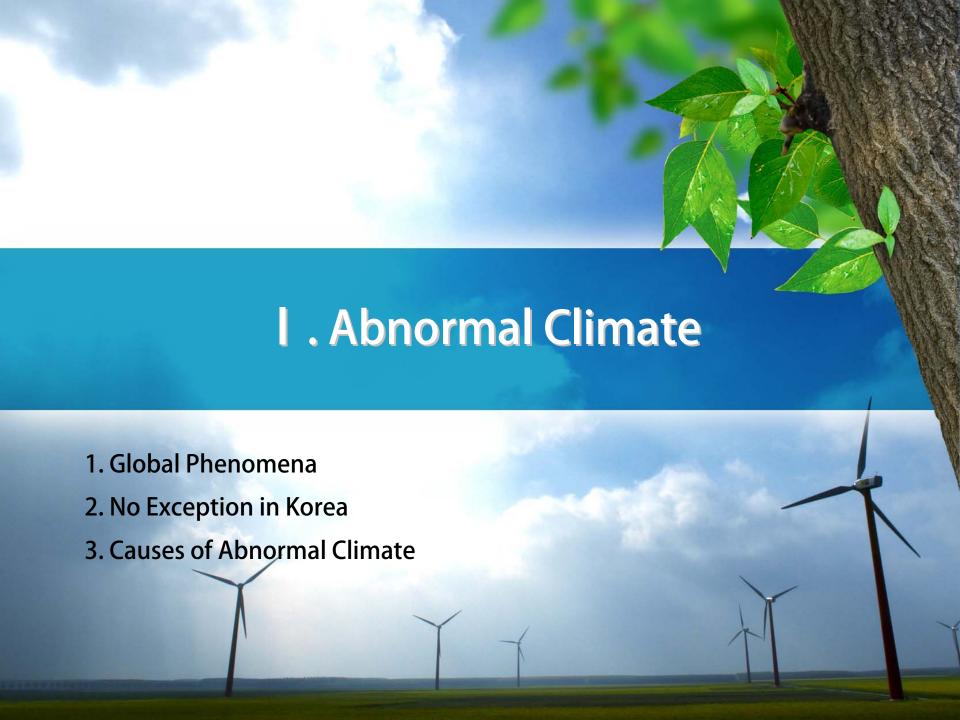


Countermeasures for Climate Change in Korea


October, 2011

Climate Change Cooperation Division

Deputy Director, Kwangsun Park

1-1. Global Phenomena

- (Japan) Dottori Prefecture 186cm, Aomori Prefecture 171cm Heavy snow(Dec 31, 2010-Jan 2)
 - Sank 190 fish boats, 120,000 households suffered blackout due to broken power-transmission towers
- \odot (China) Shandong Province suffered winder drought in 60 years ('10.9 \sim '11.2)
 - 240,000 people and 4 million ha of farmlands suffered water shortages
- (US) Minus 50° C wind chill in New England, cold wave warning (Jan 25, 2011)
- \bigcirc (Brazil) Rained 300mm for 24 hours in Rio de Janeiro (Jan. 11 12, 2011)
 - 800 people killed and 400 missing

1-1. Global Phenomena

Global Abnormal Climate in 2010

1-2. No Exception in Korea

- ☐ Heavy Snow
- O 100cm of snow fell in Gangwon Province in this February (Samcheok: 110cm, Donghae: 100cm)
 - Damaged 6.6 billion KRW of crops (estimate), sank 24 ships
 - Spent 60 billion KRW for removing snow in 6 local governments (estimate), 1,300 people were isolated
- O Ulsan was blocked in February due to heavy snow in 80 years, Hyundai Motors stopped its operation (Feb. 4)
- O Pohang recorded 52cm of snowfall in this January (record high in 60 years)
 - About 100 billion KRW lost in farms and steel distribution sectors, 97% of flights were canceled
- O In January, 2010, Seoul recorded the highest snowfall since 1937 (25.8cm)
 - Estimated economic lost of 2.4 trillion KRW

☐ Heavy Snow in Gangwon Province

[Left: Samcheok recorded heaviest snowfall in 100 years]

[Right: Removing snow in Gangneung City]

1-2. No Exception in Korea

- ☐ Cold Wave
- O In this January, Seoul and Pusan recorded lowest temperature in 10 and 96 years, respectively
- Only 44 minutes showed temperature above 0° C in this January in Seoul (lowest temperature in 30 years)
- 7,000 water pipes were frozen and showed largest power demand (73.14 million KW, Jan. 17)
- O Cold wave in Korea in Early January, 2010 (Lower than -20° C in the lowest temperature)
- Delayed and canceled subways in the Metropolitan Area (48), damaged fruits and vegetables

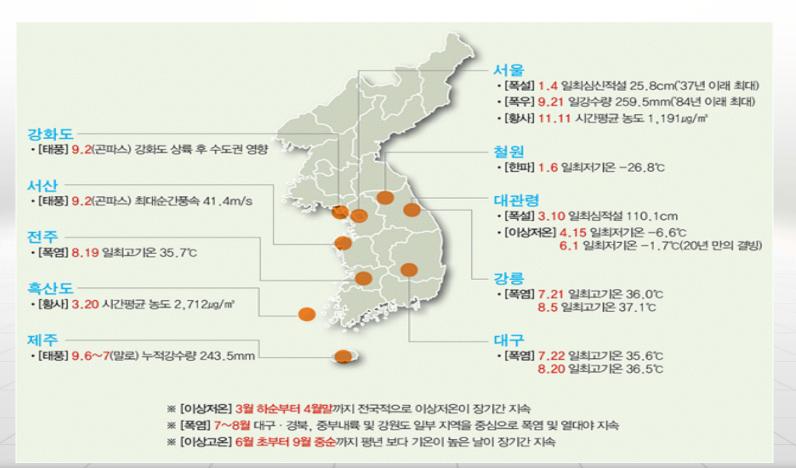
- Localized Heavy Rain
 - O Heavy rain in July, 2010 came nuclear reactors 1 and 2 to halt in Gori
 - O August, 2010 recorded 374.5mm of rainfall (41.3% increased compared to common years)
 - 5 people were killed due to lost and submerged roads and farmlands, lost 116.9 billion KRW
 - O The typhoon 'Kompasu' killed 6 people and lost 167.4 billion KRW
 - O Heavy rain in the Metropolitan Area (98mm in Seoul) during Chuseok
 - Central areas like Gwanghwamun flooded, 2 people were killed and lost 59.3 billion KRW

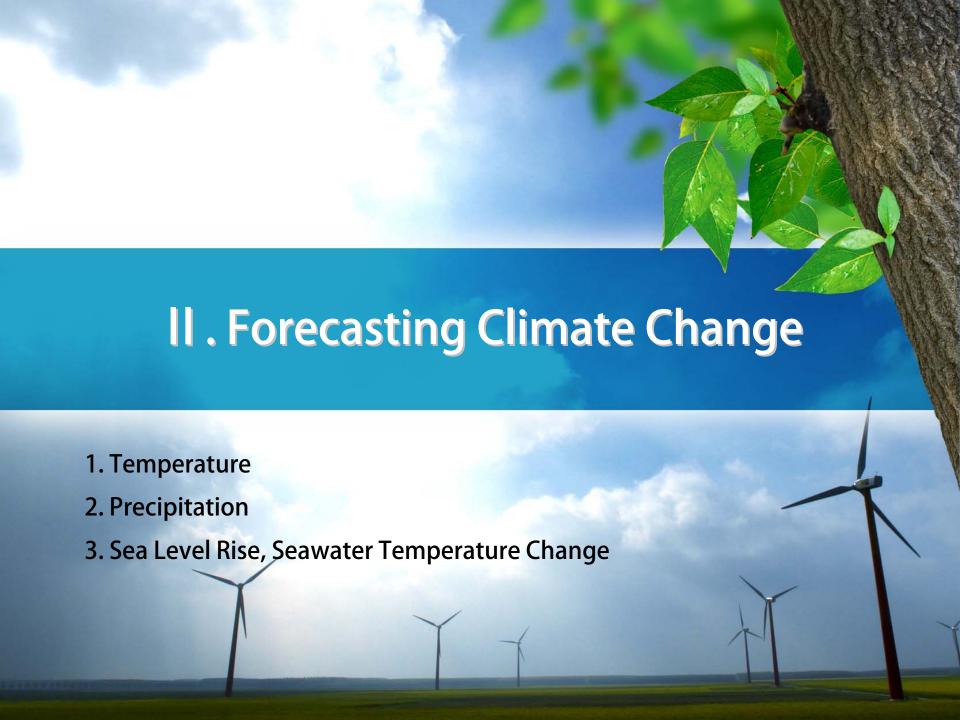
☐ Flood in Pusan and Seoul

[Right: Flood of Gwanghwamun in September, 2010]

[Left: Flood in Pusan in July, 2009

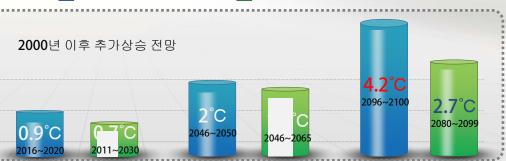
- Scorching Heat and Drought
 - 10.5 days of heat waves (over 33°C) in 2010, increased 2.3 days
 - 455 people had emergency treatments and 8 were killed
 - The maximum power demand in summer of 2010 (70.7 million KW), 11.8% increase
 - O Heat waves in Daegwanryeong in the summer of 2010 and increased rainfall in the


autumn led sharp increase in vegetable prices (Over 15,000 KRW per Chinese cabbage)


O Limited water supply due to drought in winter and spring (limited water supply for 3

months in Taebaek from November, 2009)

☐ Abnormal Climate of Korea in 2010

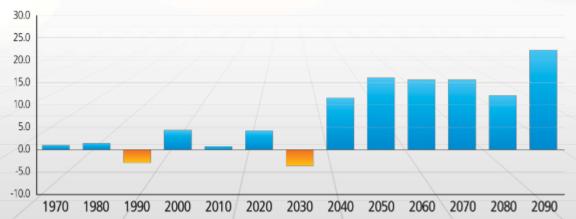


2-1. Temperature

- \odot (Status) 6 major Korean cities experienced 1.7° C increase for the last 100 years (1912 2008)
 - Pretty higher than 0.74°C (land: 0.9°C, ocean: 0.6°C) of global average increase
 - (Forecast) 0.9°C in 2020s, 2°C in 2050s and 4.2°C in 2100 (based on A1B scenario)

 Korean Peninsula (A1B)

▲ Status and Forecast of Temperature Rise in Korea and the World (Source: KMA)


2. Forecasting Climate Change

2-2. Precipitation

- O (Status) 6 major Korean cities experienced 19% increase in precipitation for the last 100 years
 - 14% decrease in rainfall days, 18% increase in density (southern part of Korea)
 - * Days with heavy rain of more than 80mm a day doubled compared to 1970s
- O (Forecast) Increasing precipitation of 15% in 2050 and 17% in 2100 compared to 2000 (based on A1B scenario)
 - Increasing volatility in time and space, intensifying drought and rainfall, more rains in August

and September

▲ Precipitation in the Korean peninsula compared to the late 20th century (1970 — 2000)

2. Forecasting Climate Change

2-3. Sea Level Rise

- \odot (Status) The sea level around the Korean peninsula rose by 8cm for the last 43 years (1964 2006)
 - Jeju showed 22cm (5.1mm for a year) rise
- O (Forecast) 9.5cm in 2050 and 20.9cm in 2100 will rise compared to 2008

Spec	East Sea	South Sea	West Sea	Korean Peninsula Average
2050	9.6cm	13.9cm	5.0cm	9.5cm
2100	21.2cm	30.4cm	11.0cm	20.9cm

▲ Estimate of sea level rise around the Korean peninsula (compared to 2008)

2. Forecasting Climate Change



2-4. Sea Water Temperature Change

- \odot (Status) Coastal surface water temperature of Korea rose on the average of 1.31 for the last 41 years (1968 2008)
 - The figure is much higher than 0.5C of global average
- O (Forecast) 1.3° C in 2050 and 2.9° C in 2100 will rise compared to 2008

Spec	East Sea	South Sea	West Sea	Korean Peninsula Average
2008	17.64°C	15.74°C	19.35℃	17.61°C
2050	19.06°C	17.01°C	20.67°C	18.95°C
2100	20.82°C	18.52°C	22.24°C	20.55°C

▲ Estimate of coastal surface sea water of the Korean peninsula (2008)

3. Impact from Abnormal Climate

3-1. Imposing Financial Burden on the Country

- O Skyrocketing Losses due to Abnormal Climate Change
- Yearly average losses (2001 2008) of 2.3 trillion KRW, more than tripled compared to 1990s
- Requiring Changes in Supply, Demand, Construction and Operation of Infrastructure
- Abnormal climate change caused 3.6 million TOE increase in 2010 (accounting for 21.8%)
- Infrastructure accounted for 62% of total losses of 251.8 billion KRW in 2007

[Rank of Annual Property Losses (1916 — 2008)]

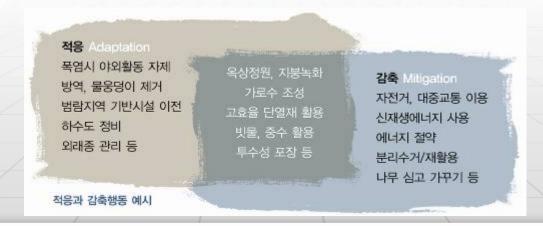
Rank	1st	2 nd	3rd	4th	5 th
Year	2002	2003	2006	1987	1998
Losses (Trillion KRW)	7.52	5.31	2.14	1.97	1.93

3. Impact from Abnormal Climate

3-2. Increasing Social Uncertainties

- (Abnormal cold wave, heavy snow) Halt transportation by vehicles, ships and airplanes, crop losses
 Adversely affecting consumers sentiment, impeding economic recovery, delaying raw material supplies
 * Heavy snow in January 2010 halted subways in the Metropolitan area (537 times, 8.3% of total scheduled operations)
- O (Heavy rain) Energy supply stopped, flood, inconvenient lives
- Lightning hit electricity transmission lines in July, 2010, automatically stopped power transmission from nuclear reactors 1 and 2 in Gori, landslide (194ha, about 25 billion KRW)
- O (Heat wave, tropical night) Lost lives, caused various infectious diseases, increased energy consumption
 - Malaria: 826 (2004) → 1,334(2009, 1.6 times increase)
 Tsuisugamushi (mite): 1,415 (2003) → 5,006(2009, 3.5 times increase)
- O (Drought) Inconvenient lives due to water shortages, industrial losses

Requiring pre-emptive measures on climate change and administration


- 1. Implementing Measures against Climate Change at the National Level
- 2. Promoting Carbon Point System and Introducing Green Card
- 3. Expanding Carbon-labeled Products
- 4. Distributing Electric Cars and Lowering Pollution from Car Emission Gases
- 5. Expanding Me First Movement

1. Propelling Countermeasures against Climate Change

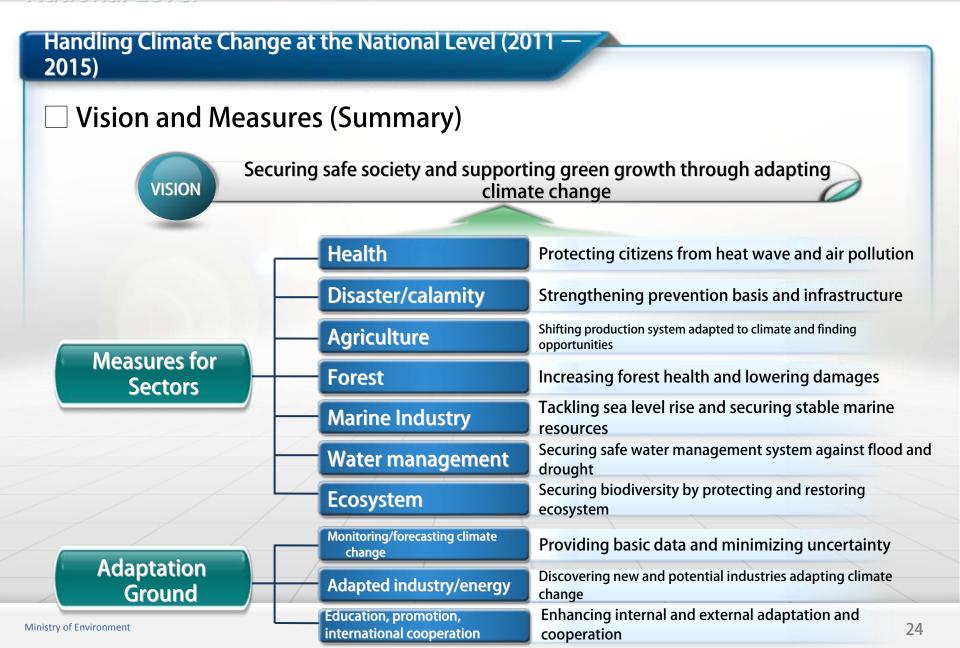
How to Cope with Climate Change

- Mitigation and Adaptation
- Mitigation: Eliminating causes of climate change and taking measures against climate change through reducing greenhouse gas emissions
- Adaptation: Reducing losses from adverse effects of climate change by adjusting natural and artificial systems, as well as, exploiting as better chances

1. Propelling Countermeasures against Climate

Change

Handling Climate Change at the National Level (2011 — 2015)


- Ground and Features
- Ground: Article 48.4 of the Framework Act on Carbon and Green Growth and the Article 38 of the same Act
- The first measures at the national level following the implementation of the framework Act (Apr 14, 2010)
- Master plan for the central and local governments to set up specific plans
- Rolling plan for every 5 years considering uncertainties in climate change
- Consultative Groups among Government Administrations

Measures Handling Climate Change at the National Level (2011 — 2015)(Controlled: MOE)

1. Implementing Measures against Climate Change at the National Level

2. Promoting Carbon Point System and Introducing

2-1. Expanding Carbon Point System

- ☐ Carbon Point System
 - A system which the central and local governments provide economic incentives when households or businesses reduce electricity, water or gas uses (benchmark: average uses of 2 previous years before subscription)
 - About 1.78 million households as of the end of 2010
 - **** 46% of participants reduced energy uses in 2010**

Total	Households using more energies	Households reducing 0~5% of energy uses	Households reducing 5~10% of energy uses	Households reducing more than 10% of energy uses
100%	54%	12.8%	10.3%	22.9%

2. Promoting Carbon Point System and Introducing

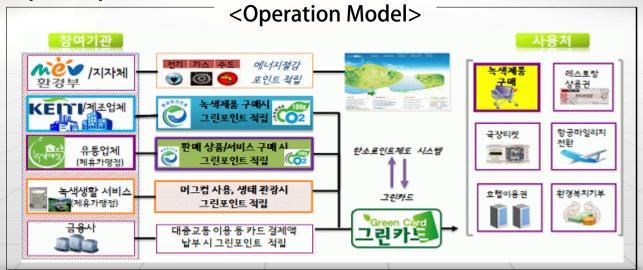
2-1. Expanding Carbon Point System

Incentives

(Unit: KRW)

Total	Annual reduction rates of greenhouse gases			
	Reducing 5 - 10%	Reducing more than 10%		
Electricity	20,000	40,000		
Water	5,000	10,000		
Gas	10,000	20,000		

• Link with the green card system, implementing energy-saving society connecting green life to economic benefits


 $[\]Box$ Expanding to 6 million households by 2015 (1.7 million in 2010 → 4.5 million in 2013 → 6 million in 2015)

2. Promoting Carbon Point System and Introducing

2.2 Introducing Green Card

- Overview and Status
 - A system for consumers to enjoy green life by adapting point system of credit cards and accumulating points to use as cash
 - A system linking green life with economic activities and maximizing benefits for all the participants

2. Promoting Carbon Point System and Introducing Green Card

2.2 Introducing Green Card

Plan

	2012	2013	2014	2015
Issuing green cards	1 million	2 million	3.5 million	5 million
Manufacturer/distributor	100	150	300	400
Partners of green life points	5	10	15	20
Support center for green purchase	5	8	11	16

- Expanding Government Support for Green Card Partners
 - Reducing burden on environment improvement, treating donation as expenses
- Early Maintenance of Infrastructure
 - Developing green product identification system and green card platform, establishing point system
- Integrating Similar Systems: Integration with Seoul City (eco mileage card)

3. Expanding Carbon-labeled Products

3-1. Carbon Labeling System

Background

- Displaying greenhouse gas emission on products generated from all the process of services, securing consumers rights and leading low-carbon, green consumption
- Consisting of 'Carbon Emission Certificate' and 'Certification of Lowcarbon Products'

<Stage 1: carbon emission certificate>
Grant certificate by quantitatively identifying greenhouse gas emission from the whole process

<Stage 2: Certification of low-carbon products>
Grant certificate if a product with carbon
emission certificate meets low-carbon product
standards

- (Performance) 447 products of 93 companies in the late September, 2011
- (International trend) 12 countries like the UK and Japan implemented

4. Distributing Electric Cars and Lowering Pollution from Car Emission Research

4-1. Distributing Electric Cars

Goal

- Distributing 1 million electric cars by 2020
 - * Reducing 300,000 tons of air pollutants and 6.7 million tons of greenhouse gases

Contents

- Electric Car
- Subsidizing 50% of price difference between gasoline and electric cars with same capacity by 2010 for the central government, local governments and public organizations, distributing more than 4,000 vehicles
- Infrastructure
- Supporting installation of at least 3,000 fueling facilities for electric cars
- ****** Purchasing 800 electric cars and installing 240 charging facilities in 2011 (16,710 million KRW)
- Expansion
- Improving systems including percentage for public organizations to purchase low-pollution vehicles, nurturing leading cities for electric car distribution, promoting to use electric cars in national parks

4. Distributing Electric Cars and Lowering Pollution from Car Emission Gases

4-2. Expanding Low-carbon Cars

Policy direction

Growing number of low-carbon cars by developing and distributing new "compact" cars

Distribution rates of low-carbon cars: 7.9% (2009, compact cars) ⇒ 30% (2020)

- Despite various policies, the distribution rates of compact cars was just 7.9% in 2009 (30% for advanced countries)
 - Rates: 55% (Italy), 39% (France), 31% (UK), 30.6% (Japan)
 - Average engine capacity (2007): Korea (2,113cc, EU: 1,744cc)

4. Distributing Electric Cars and Lowering Pollution from Car Emission Research

4-2. Expanding Low-carbon Cars

Compact Car

Less than 1,000 cc

135g/km

Tax benefit, tollgate fare, public parking lot discount

Low Carbon Car

Engine capacity Less than 1,600 cc

CO2 emission

Less than 100g/km

Benefit

Same for compact cars + incentive to supporting purchase based on CO2 emission

Reviewing links to massively emitting CO2 cars (Malus)

5. Expanding Me First Movement

5-1. Overview

Overview

- Expanding Me First national movement based on the green start network
- → Settling as core reduction in non-industry sector → Contributing to 30% reduction in 2020 compared to BAU

Strategy

Mature 2 Step Modes

Integrating distributing human and materials resources
→ Producing visible outcome (2012, 24 million people with green lives)

Integrated Space

- Establishing hub for climate change education
 - * on and off-line

Users

- Expanding participants joining greenhouse gas reduction (1.48 million in June, 2011)
- Establishing organic promotion networks

Promotion Infrastructure

- Developing various contents
- Green life education based on levels or grades
- Promotion for seasons or themes

5. Expanding Me First Movement

5-2. Implementation Plan for Green Lives

- Implementing various policies to reduce greenhouse gases from non-industrial sectors and lead nationwide participation
- (1) Promoting green families and consumption (Distributing guidelines for low-carbon and green lives)
- (2) Green workplace (cool dress codes, green office)
- (3) Green public transportation (using public transportation, eco-driving)
- (4) Incentives to households/businesses (carbon point system)
- (5) Production/distribution incentives (carbon labeling, green store certificate)
- (6) Nurturing core human resources (green leader)
- (7) Communication center for green lives

<Reference> Specific Plans for Green Lives

Distributing "low-carbon" green life

- Reducing 10% of greenhouse gases by proposing guidelines for heating, electricity and water uses (Sep, 2009)
- Using green leaders, diagnosing greenhouse gases

Settling eco-friendly food

- National movement for no leftover
- Expanding eco-friendly agricultural productions (5% in 2009 → 9% in 2012)

Using less disposable goods, expanding green consumption

- Expanding "guideline for using less disposable goods" in public organizations
- Expanding "stores with no disposable plastic bags" among mega stores
- Campaigning "green consumption week (June)"

4인가족 바람직한 저탄소 생활양식

